
QDL DB

Introduction
The QDL database extension. A module that allows access to various databases and has an extremely
simple syntax – there are 4 functions and that’s it. This is designed not to be a full fledged database
application, but a tools module that allows for all the basic access to various databases with the grunt
work of converting between types as well as having a way to work seamlessly with native SQL types.
Typically you would write your database application using this module.

Loading the module
To load the module, invoke

 q := module_load('edu.uiuc.ncsa.qdl.extensions.database.QDLDBModule', 'java')
 module_import(q)

Supported functions

Name Description Comment
connect(cfg.) Open a connection to the

database
All other requests will fail until this
is called

execute(stmt{,args.}) Execute a statement with no
result

read(stmt{, args.}) Execute a statement with a result
update(stmt{,args.}) Update an entry in the database

Variables

types. - a stem of names and integer values,

 types.
{
 NUMERIC:2,
 FLOAT:6,
 BLOB:2004,
 LONGVARCHAR:-1,
 CLOB:2005,
 ARRAY:2003,
 BINARY:-2,
 CHAR:1,
 BIGINT:-5,
 TIME:92,
 BIT:-7,

 DATE:91,
 REF:2006,
 SQLXML:2009,
 SMALLINT:5,
 TIMESTAMP:93,
 VARCHAR:12,
 REAL:7,
 VARBINARY:-3,
 DOUBLE:8,
 STRUCT:2002,
 TINYINT:-6,
 INTEGER:4
}

These are internal values and should not be altered.

Arguments
The statement in each of the calls above is a string. It may be either hard coded such as

select * from my_table where id='42'

which would be issued as

db#read('select * from my_table where id=\'42\'');

Or it may be prepared with ? signs replacing the arguments and a list of arguments and possibly their
types supplied.

QDL tries to be helpful, in that if you supply no SQL type, it will be inferred, so a string will be treated
as if it is a string.

That said, databases can have any number of oddities so if you need a specific SQL type (e.g. you have
a column that is a tinyint) then by all means specify it. In this case, if the argument were a tiny int, you
would issue

db#read('select * from my_table where id=?', [42,types.TINYINT]);

Prepared statements are also extremely useful so you don’t have to do a lot of escaping of quotes. For
instance to do a search using a regex might look like

 db#read('select client_id from oauth2.clients where client_id regexp ?',
['.*123.*'])
{client_id:oa4mp:/client_id/7142f3461239deb57d98ba3a4636}

Remember that SQL engines are not really QDL aware, so if you are trying to store your 1000 digit
approximation to pi as a number, the database may simply refuse to accept it.

Responses
A stem response is of the form

{column0:value0, column1:value1, …}

The response from a read will be either a stem response (if there is a single row returned) or a list of
them for multiple rows. The type of the value will be one of the basic QDL types, matched up to the
response from the server. Default case is value is a string.

Only a read will return a response. In the example above, including the response we would have

 db#read('select client_id from oauth2.clients where client_id regexp ?',
['.*123.*'])
{client_id:oa4mp:/client_id/7142f3461239deb57d98ba3a4636}

In this case, the select statement requested a single column, client_id and that is therefore the only key
in the response.

Connecting to the database
The basic way to do this is to create a stem of values and pass that to the connect function. Supported
values are

Name Description Comment

username The user name

password The password

database The name of the database In Derby this is the path

schema The schema

host The host

port The port Standard ports are 3306 for maria DB
and mysql and 5432 for postgres. Derby
does not use ports

parameters Specific connection parameters These are very vendor specific

useSSL Use SSL for the connection Make sure you have set up SSL correctly
first!

bootPassword The boot password Derby only

inMemory Run in memory only Derby. Note that this database will
vanish as soon as you exit QDL.

type The type of the connection One of mysql, mariadb, postgres or
derby

An Example
 cfg.'username' := 'qdl-user';
 cfg.'password' := 'w00fity';
 cfg.'schema' := 'qdl_test';
 cfg.'database' := 'qdl_test';
 cfg.'host' := 'localhost';
 cfg.'port' := 3306;
 cfg.'type' := 'mariadb';
 db#connect(cfg.);
true

This indicates that a connection to the database was made. Here is a test to count the rows in one of
the tables

 db#read('select count(*) from transactions');
{count(*):161}

The result is a stem. Note that the database engine itself returned the name of the result as 'count(*)'
and this may vary by vendor. In any case, there are 161 entries in the given table for the given database.

How do I close a connection?

You don’t. Connecting to the database means creating a pool that makes connections and destroys
them as needed, so there is no single connection to dispose of.

	Introduction
	Loading the module
	Arguments
	Responses

	Connecting to the database
	How do I close a connection?

