
QDL Reference Manual
Version 1.4

Introduction
This document is the reference manual for the QDL (pronounced “quiddle”) jokingly referred to as the
Quick and Dirty Language, which was specific to the OA4MP system and is used for all manner of
server side-scripting. The aim of it is to have a reasonable language that is as minimal as possible and
allows for a wide range of operations on claims and server-side management of clients.

Origin of the name

“Quiddle” by itself has two meaning.

1. (noun) A small or trifling thing

2. (verb)Treating a serious topic in a trifling way.

QDL (as a moniker) comes from aviation navigation (“Q-codes”) which refers not to something trifling
at all but a (usually essential) set of navigation bearings taken at regular intervals. Usually these are
critical and needed for course corrections when a pilot cannot use their instruments (e.g. the aircraft is
in severe weather, has no visibility and cross winds make judging actual speed and bearing impossible,
aka it’s a fix for flying blind.) In the original scripting environment, this ran on a OAuth server for
certain types of additional processing. Scripting was called at regular intervals to do implementation
specific tasks (such as acquiring claims and monitoring the control flow.) As it were, scripting keeps
the OAuth flow on course. (The logo has the Morse code for Q-D-L in it, by the way.)

The second meaning of quiddle is a bit more lighthearted. E.g. Monty Python quiddled the Middle
Ages in their movie “Monty Python and the Holy Grail.” This is not a trivial language – far from it –
but rather than take the approach of having an exhaustively complete language this is purposefully as
minimal as possible. The specification is barely a page and it should take nobody with a smattering of
computer background more than 15 - 20 minutes to be writing productively in it. Life is too short to
learn another C++…

The way this is done is that the data types for the language (stems and scalars) have embedded control
structures and additionally there are major constructs for the language (looping, conditionals,
encapsulation &c.) which are very bare-bones. This covers the dictum of aiming at the probabilities
(what you are most likely to do) not the possibilities (what your wildest dreams envision). So you may

need a loop and there is one – just one – rather than having several with niggling syntax that covers
every possible variation. If you need something more, than there are tools to cobble it together.

(A much more complete language was designed and a specific subset implemented, so if there is a hue
and cry for something more, it would actually be pretty easy to add it. In other words, backwards
compatibility is built in for future extensions. Just saying it so we are clear.)

A bit of motivation about aggregate variables since this strikes many people as offbeat. QDL works
very well as a server-side policy language. A very common situation is having to configure many rules
for doing fairly simple tasks, e.g., if a user has logged in through an institution, belongs to any of a few
groups, has an affiliation with a third institution, then some subset of information should be returned. In
large blocks

huge rats nest of conditions

 ==> do something conceptually easy but very repetitive to a large set of data

So this language needs to have a lot of horsepower for decision making and very simple ways to work
on large data sets. On top of this, since these scripts frequently run on server, speed is essential and
implicit looping (discussed later with stem variables) makes this quite a snap. Think of it as a notation
that happens to have some control structures.

How did this start? Basically I would write out high level algorithms using this sort of notation, then
implement them in whatever language I needed. It dawned on me to cut out the middle step.
However, a notation is not a programming language, so QDL was created that had the bare bones
constructs for actually running it on a computer. This minimalist approach is everywhere, since
creating a new computer language normally leads to lots of bloat to cover all sorts of general
purpose cases. If you need something, write it, but the language itself should be the toolkit for such
things, not (like C++ or Java) an ever growing welter of constructs and arcane libraries that make
programming sometimes quite a chore. Nobody knows all of Java or C++ because it is not humanly
possible.

But but but… what about structured programming, object oriented programming and all of the other
paradigms? Those exist so programmers don’t shoot themselves in the foot. QDL is, as I have stated, a
notation with some control structures so it fits on a computer. The fact you can write inefficient code or
some such is no more a criticism of it than complaining that if the alphabet lets you write gibberish, it
should be banned. People write terrible code in C/C++, Java, Perl (kinda built in, actually), etc. ad
nauseam, all the time which can get hidden in all of the things designed to prevent bad code. I can’t
count the number of times I’ve seen a welter of objects in Java trying to implement a design pattern
(for the sake of using patterns since we all know they solve all bad programming issues, right?) when a
few lines of well aimed code would be more understandable, perform better and be far more
maintainable. In QDL the onus is on the programmer to write elegantly.

Cheat Sheet
Constant types: null, boolean, number, string

Variable types: scalar, compound (aka stem variables), sets

Control structures: if..then...else, while loop, switch statement, try...catch.

Encapsulation: module

Basic syntactic concepts.
1. Weakly typed
2. Simple and stem variables
3. A very full set of logic/algebraic operations
4. A full but minimal set of control structures

Constants and expressions
There are boolean, number (integers are (64 bit), decimal are unlimited, if you exceed 64 bits, it will
get converted to a large decimal (using scientific notation)), string and stems. Valid identifiers a-z,
upper and lower case, $_ and digits. Variables may not start with a digit. There is not limit to the length
of a variable name. These are all fine:

a___$
$holyCow
__internal_function

Note that in some cases, the dollar sign may be used for escaping disallowed characters. See encode
and decode for type 0 and the particulars as relates to working with, e.g., JSON.

QDL supports the following standard algebraic operations:

+ - * / % ^ ⌈ ⌊

as well as several operations on sets (see below).

Note that the operator % is the integer part of division. So

 42/9
4.666666667
 42%9
4
 14.2%7.5
1

Raising a number to a power works with all exponents, so

 1.2^1.3
1.2674639621271

So to get the square root of a number, raise it to the 0.5 power.

The floor and ceiling operators, resp. , (unicode 230a, 2308) are supported. Note that there are ⌊ ⌈
standard functions named floor() and ceiling() if you do not want to use the special symbols for
them:

⌊x == floor(x) and x == ceiling(x)⌈ are always true.

Note: Decimals require a leading number. So 0.3 is acceptable but .3 is not. This prevents ambiguity
with stem variables in parsing (and saves you from having a ton of parentheses to disambiguate cases).
Basically if you write .23 QDL cannot tell if you intended a number of forgot the stem and will tell
you so in no uncertain terms.

Note: Decimal exponents require the base be non-negative. You may wonder why ^ will fail for
something like (-2)^0.333, isn’t that basically the cube root? Note that 0.333 = 333/1000 hence this
actually means ((-2)^(1/1000))^333 said more plainly, every decimal exponent is an even root on
a computer(!) There is, of course, a way to do this in QDL, see nroot which allows you to take integer
nth roots, in this example, nroot(-2,3).

Other notations for numbers

It is easy to write scientific notation in QDL. This is of the form m*10^k.The so-called standard form
has m restricted to a single digit decimal. So 350 = 3.5*10^2. QDL does no specific parsing since
this is just arithmetic.

 QDL also supports engineering notation for numbers. These are of the form

decimalEexponent or decimaleexponent

Note the the exponent must be an integer but may preceded by a + or - sign. You may have any decimal
for the left side, and QDL will normalize it to a single digit, adjusting the exponent as needed.

For instance

 1234.567E5; // show how numbers are normalized.
1.234567E+8

 2.34E5/5.67e3; // == 234000/5670
41.269841269841269

 2.34E5*5.67E-3; // == 234000*.00567
1326.78

 2^1.2E2; // == 2^120
1.32922799578492E+36

But you must use this format. Entering something like this won’t work

 2E-3
syntax error:line 1:1 missing ';' at 'E'
 2.0E-3
0.002

Note: the exponential function for base e is supported and is exp(r).

QDL also supports the following logical operators

< <= > >= && || ! =~ <<

and the following increment and decrement operators, which may be used before or after variables.

-- ++

The usual convention is in force, meaning that postfix returns the current value, then carries out the
operation. Prefixing means the value is updated then returned. Doing a simple example in the
workspace:

 i := 2
 i++
2
 i
3
 ++i
4
 i
4

The limited character set for symbols is intentional since this sidesteps running it on systems that may
have character encoding issues or more usually, working on a system where the supported terminal
types are very limited. Generally however, the contents of a string may be UTF-8 with no issues.

Inline conditional expressions

There is a control structure of if[…]then[…]else[…] but this is a pretty heavy weight solution.
There are blocks with local state inside the []. See below. Anything with square brackets in QDL is
referred to as a statement and is a syntactical unit. Statements do not return values. Expressions,
however do return values. If you just need to check a conditional, QDL also supports two different
(ternary) syntax expression of

boolean |boolean. ?|⇒ expression0 {: expression1}
boolean. ?!|¿ expression0. {: expression1}

For the first, this means that the boolean is evaluated and if true then expression0 is returned and if
false then expression1 is returned. (expression1 may be omitted in which case it is assumed to be
null.) The boolean is a scalar, or a simple stem (so a list or stem with no nesting). More to the point, the
inline conditional is “just another expression”, so you can nest these or use them pretty much any place
you want as if they were algebraic quantities. The major difference is scope – the conditional allows for
variables in the bodies of the blocks and you can write even whole programs there. The inline
conditional is for all the much more simple cases.

For the second this is an exclusive or construction (called a switch or select statement in other
languages) and the left argument is a boolean stem with at most a single true value. Again, if the else
clause is omitted (which is the default if all booleans are false), a null is returned.

E.g.s

 x := mod(date_ms(), 2); // equals 0 or 1 randomly
 say(3*(x==0?4:5));
15

// guess x == 1 this time...

This shows that the inline conditional is just another expression.

 pi()^exp() < exp()^pi() ? 'left is bigger' : 'right' + ' is' + ' bigger'
left is bigger
 3 < 2 ? 4>3 ?'a':'b':'c'
c

Note that the last one could be written with parentheses, (3 < 2) ? ((4 > 3) ?'a':'b'):'c' but
the aim was to show that it is resolvable as written. The precedence of inline conditionals is generally
about the lowest, so everything else gets evaluated first. Finally, the else clause (after the :) is not
optional.

In place of ? you may also use logical implies (unicode 21d2,):⇒
 pi()^exp() < exp()^pi() ⇒ 'left is bigger' : 'right' + ' is' + ' bigger'

Conditional example with a stem as the left argument.

If the first argument is a stem or list, then a conformable result is returned. In this example, a list, p.,
contains strings and we need to make sure all of them are terminated with a /. We check with a regex
and use the ternary operator to return a slash if needed or an empty string if not.

 p. := ['a:/x/y','a:/x/z/','b:/p/q']
 p.+('.*/' =~ p.?'':'/');// regex to test if an element ends with a slash
[a:/x/y/,a:/x/z/,b:/p/q/]

The stem does not have to be a list. There is no subsetting that occurs with the expressions and they are
returned as is:

 a.0 := false; a.'foo' := true; a.3 := false;
 a.?[-2;2]:{0,1}
{foo: [-2,-1,0,1], 0:{0,1}, 3:{0,1}}

Switch/Select example
 rc:= script_load(
 ['post_auth','post_token','post_refresh']==exec_phase
¿['auth.qdl',’token.qdl','rtx.qdl']:'init.qdl');

 if[rc != 0]
then[//… other stuff

In this case, one of four scripts will execute, setting a rc (return code) variable for further processing.

Comparison with select, conditional and mask.

The mask function at first glance seems like the same as ?! or perhaps ?:

 mask([false,true],[1,3])
3
 [false,true]?![1,3]
3

So what is the difference?

In mask, the argument is evaluated. In select, only the true value is evaluated.

So you can do this

 a:=4;
 [a,b]?![a++,b++]; // Asaumption is that a or b exists, increment which exists∃
4
 a
5

where using mask would fail since it would attempt to evaluate b++ when it does not exist. In the same
way, the argument to ? is only evaulated if it is true:

 a :=4;
 a?a++:0; // Assumption is that a or b exists, increment which exists∃
4

Monadic operators, or, one gotcha.

You should be aware that the negation operator, ! or ¬ is a monadic operator, hence it affects
everything to its right, it is not part of the value. This goes for the negative of a number as well. -3
means take three and apply the negative operator to it and will result in the number negative 3.
Continuing with logical negation, these are equivalent

 !a<2 && b < 3 <==> !(a<2 && b<3)

If you wanted ! to apply to the left hand expression, you would write

 (!a<2) && b < 3

If you intended the latter, and wrote the former, you would get the opposite value than you expect. The
same goes for monaic minus and plus – they affect the result to their right. Usually this is what you
want, just be aware. Here is about the simplest example of its operation

 ! true && false
true
 (! true) && false
false

Again, in the first example, everything to the right is evaluated then fed to the ! (which is a monadic
operator). Why does this work differently? Because QDL allows for many operators (like ++) which do
not normally live on the order of operations chart. It is simpler conceptually to treat monadic and
dyadic operators in a uniform way. Standard operators like multiplication and division do have standard
order of operations, but anything else does not have a canonical place there, so parentheses should be
used.

The type operator, <<

The basic types in QDL are Null, Boolean, String, Integer, Decimal, Number, Stem, List and Set. You
may check a value against these with the type operator, <<, which returns a true or false.

 [;5] << Stem
true
 [;5] << Integer
false
 5 << Boolean
false

A little difference between the type operator and other operators is that it works on the entire left hand
argument rather than being extended to each element.

Notes

1. You should make it a point of either enclosing leading negative numbers in parentheses to cut down
on ambiguity or just use alternate lead minus and plus signs (¯, unicode 00af, or , unicode 207a). Also⁺
be careful of spaces, since “++” and others are properly digraphs and will be interpreted differently
than “+ +”. How should QDL interpret

a---b

Should this mean (a- -) - b or perhaps a-(- - b)? (QDL will actually do the first, but that is not obvious
at all.) Such error can be very hard to track down.

2. QDL does “short-circuit” conditionals, so e.g., in A && B && C each of A, B, C will be evaluated
only if the previous element evaluates to true . E.g. false && true && true will stop evaluation
after the left argument is found to be false , since the rest of the conditional cannot be true.

Similarly for true || false || false since this must evaluate to true since the first term is true.

3. QDL allows for chained comparisons, so a statement like a≤x<b is perfectly fine and is equivalent to
(a≤x) (x<b). ∧ Similar for a!=x<b which is the same as (a!=x) (x<b). ∧ This includes: Note well
that something like x<a<b is most emphatically not (x<a) && (x<b)!

Assigning values
There is a specific operator, denotes := which is used when setting a variable. This is a fine example:

c := 4;

As we will see later, you may also use this to assign a value to a stem variable by including the final
period:

a. := [;3];

You may chain these

a := b := c := 1;

will assign each variable a, b, and c to the value of 1.

You may also use the reverse assignment =: (the colon goes next to the thing being defined) to do

5+3^4 =: x

Assignments are just dyadic operators, so they return their assigned value which lets you do
assignments in expressions and do things like

 d := (false =: c) || true
 d
true
 c
false

However, there is a caveat and that is the reverse assignment cannot be chained easily, since it is far to
easy to write ambiguous assignment statements (which may end up assigning unexpected values).
Generally it is best to use parentheses if you want assignments going in different directions in a single
expression.

More assignment operators.

There are also shorthand assignment operators for each basic operation of + - * / % ^. So if op is one
of these operators (referred to as overloaded assignments) then

A op= B

is identical to issuing

A := A op B

these only exist for left-hand assignments, by the way.

Example:

 a := 3;
 a ^= 2
 a
9

This takes a, which is assigned the value of 3, squares it and assigns the new value of 9 to a.

Another example.

 A := 'a'
 B := 'b'
 q := A += B += 'c'
 q
abc
 A

abc
 B
bc

So in summary, here are all the supported assignment operators

:= += -= *= /= %= ^=

And to make it clear, the basic assignment operator or := does not require the left-hand side exist before
use, but the others do.

List assignments

A special case (read “syntactic sugar”) is to allow for multiple variables to be set in list form. Each
element in the list on the left is assigned the corresponding value from this list on the right. No complex
stem structures are allowed and mostly this is just you can make a visually simple set of assignments.

 [a, b., c] := [3, [;5], 6]
 a
3
 [a, b., c]
[3,
 [0,1,2,3,4],
 6]

This works for overloaded and left assignments too.

 [a, b., c] += [3, [;5], 6]
 [a, b., c]
[6,
 [0,2,4,6,8],
 12]

Weak typing
As we have said, there are 4 primitive or scalar types: null, boolean, number and string. Booleans are
either true or false, e.g.

a := true;

Numbers are of two sorts which are used seamlessly as needed. Integers are 64 bits and require no
special handling. Decimals are more or less arbitrary precision. We say more or less because if you give
the decimal, it will be exact, but in operations (well, division only) where the decimal can't be exact, it
is kept to a fixed decimal precision. The default is 15 digits. See numeric_digits() for how to change
this, or set it in the configuration.

 numeric_digits(50)
15
 say(234234234.234234234*987987349857349);
231420460326946612381192.152285666
 say(1/3);
0.33

The first result is exact because we specified the number of digits. In the second case, there is no exact
decimal representation of 1/3, so it is truncated.

Strings are single quote delimited and you may embed single quotes by escaping with a \'. So here is a
string:

 my_string := 'abcd\'efg';
 say(my_string);
abcd'efg

While QDL has very a limited character set for variables, all string are fully UTF-8, except control
characters are not allowed, though a few of the more common ones may be escaped as per this table:

Sequence Name Description

\b backspace move cursor back one space

\t tab insert tab character

\r return return cursor to start of the line

\n new line return cursor to start of line and advance to next line

\' single quote a single quote

\\ slash a slash

\uxxxx unicode Any non-control unicode character. xxxx is a 4 digit hex value

 '\u00f7\u2234\n\u2235'
÷∴
∵
Here there are 3 unicode characters and a new line.

Unicode and alternate characters

QDL uses ASCII 7 characters, but a few alternates are also allowed (mostly for replacing digraphs) f
you prefer – this is a matter of taste more than anything else.

Standard Unicode ALT unicode escape What is it
! ¬ ! \u00ac logical not
- ¯ _ \u00af unary minus, the negative sign
=== » ‘ \u00bb function/module documentation
* × * \u00d7 multiplication
/ ÷ / \u00f7 division
- > → d \u2192 lambda function
? ⇒ ? \u21d2 alternate for ternary conditional expression
has_value ∈ e \u2208 set is member of
!has_value ∉ E \u2209 set is not member of
/\ ∩ i \u2229 set intersection
{} ∅ n \u2205 the empty set
\/ ∪ u \u222a set union
&& ∧ & \u2227 logical and
|| ∨ | \u2228 logical or

:= ≔ : \u2254 left assignment
=: ≕ " \u2255 right assignment
=~ ≈ - \u2248 regex matches
` · . \u00b7 raised dot
!= ≠ + \u2260 not equal to
== ≡ = \u2261 logical equality
<= ≤ < \u2264 less than or equals
>= ≥ > \u2265 greater than or equals
ceiling ⌈ k \u2308 ceiling operator
floor ⌊ l \u230a floor operator
|^ ⊢ s \u22a2 set conversion
[| ⟦ { \u27e6 left closed slice bracket
|] ⟧ } \u27e7 right closed slice bracket
assert[][] ⊨ a \u22a8 assert
for_each ∀ A \u2200 for_each as an operator
is_defined ∃ i \u2203 is_defined for variables, is_function
!is_defined ∄ I \u2204 negation of is_defined, is_function
has_key ∋ h \u2203 has_key
!has_key ∌ H \u220c negation of has_key
transpose ⦰ t \u29b0 transpose operator
expand ⊕ X \u2295 expand operator
@ ⊗ @ \u2297 function reference
reduce ⊙ x \u2299 reduce operator
mask ⌆ ⌆ \u2306 mask operator
pi π p \u03c0 Greek letter pi.

(If you are running QDL with the -ansi option, then the ALT characters are available. See the
appropriate blurb for more.) You can always get this list in the workspace with)help unicode.
Note that there are some differences in function vs. operator notation. The usual pattern is

function_name(object, args…)

i.e., that the main object the function works on is the first argument. In the operator version, the main
object is the left argument,

reduce(@f, a.) iff @f a,⊙

That said,

 f(x) → (0 ≤ x) (0.7 ≥ x ÷ 11)∧
 f(2)
true

is also a perfectly fine function definition. Greek letters (upper and lower case) are also allowed for
function and variable names, but that is again a matter of taste (and keyboard availability). A full table
of Greek letters is available in the workspace with)help greek. Remember that while the escape
sequence can be used inside of strings, they do not work at the command line, so

\u03a9 \u2254 \u2205; // Fails!
Ω ; // Works!≔ ∅

the first will fail. You must use the character (the reason for adding in the alternates is to increase
readability).

Since there are many times external programs use double quotes and one of the aims of QDL is to make
it interoperate nicely with other languages, using single quotes saves a lot of time dealing with niggling
issues about where an extra double quote crept in.

You may also concatenate strings easily using the + operator, so

 say('abc'+ '123');
abc123

Similarly, the “-” works on strings too and removes the right elements from the left:

 say('abcdeababghabijab' - 'ab');
cdeghij

Extending + to *, you may create multiple copies of strings

 3*'a'
aaa

Multiplication for strings is defined for non-negative integers. Multiplying a string by zero returns the
empty string. Division is defined as the number of times the left side is found in the right.

 'asdasdasd'/'as'
3
 5*'bar'/'arb'
4

Exponentiation of strings is not defined.

Strings may be compared as substrings using <, <=, >, >=, ==, != and =~ so

 'foo' == 'foo'
true
 'abc' < 'abcd'; // so abc is a proper substring of abcd
true
 'abc'<'abc'; // abc is not a proper substring of itself
false
 'abc'<='abc'; // abc is equal to itself (yup!) or is a proper substring
true
 'foo'<'bar'
false
 'arba'<3*'bar'
true

Inequalities test for substring. Cf. starts_with which tests if the substring starts on the first character.

Regular expressions

There is support in QDL for regular expressions aka regexes.

Matching

The special comparison of =~ (or ≈) compares the value on the right with a regular expression on the
left:

 '[a-zA-Z]{3}' =~ 'aBc'; // Checks if the argument has 3 letters
true
 '[Yy][Ee][Ss]' =~ 'yEs'; //Checks that the argument is case insensitive ‘yes’
true
 '[0-9]{5}' =~ [234,34567,5432345]; // Check which are 5 digit numbers
[false,true,false]

Note that the right hand argument is always converted to a string before the regular expression is
matched to it.

Unlike many languages, there is no explicit type set forth for most languages and indeed, you may even
change the type on the fly without penalty. For instance, this causes no error:

my_var := 'Avast ye scurvy dogs!';
my_var := size(my_var);

Where in many languages this would raise an exception. This is the “dirty” part of the name: the onus
is on the programmer to keep this straight. Variables may contain the letters (upper or lower case),
digits, underscore and dollar sign. Variables are case sensitive, so do be careful.

Splitting

Splitting is of the form

tokenize(arg, 'regex', true)

There is a separate section below about the tokenize function, but this section is to consolidate
information about regexes in QDL.

Replacing

Replace using regular expressions is of the form

replace(arg, 'regex', 'replacement', true)

Note that replacement is just a string, not any sort of regular expression. Every place that the regex
matches in arg will be replaced with replacement. See the section below on replace.

Reserved keywords
There are a few reserved key words in QDL:

true if while try module define block
false then do catch body local

null else assert

Boolean String Null Integer Decimal Number Stem
List Set

(Capitalized keywords are types, so Null is the type but null is a value.) The first two, true and
false are boolean values. The third, null is the null value for variables. So these are fine variables in
QDL one and all:

integer := .5;
boolean := 3.3^11;
decimal := true;
scalar. := random(1000);

But

if :=2

causes a syntax error..

Now as to whether you really want to set those variables to those values is your issue. The point is that
there are very few such reserved words and they are actually constants. The aim was to keep structures
as cleanly separated as possible from code.

Basic Data types. Scalars, Sets and Stems

Scalars
A simple variable, also called a scalar consists of primitive types, which are boolean, number (both
integer and decimal) and strings. These look just like any other variable from most programming
languages (the “:=” is the assignment operator). So for instance

a := 'foo';
my_boolean := true;
my_integer := 123;
my_decimal := 432.3454;
b := 'Trăm năm trong cõi người ta, Chữ tài chữ mệnh khéo là ghét nhau.';

are all valid simple variables.

Sets
QDL also allows for sets. A set is an immutable, unordered and every element is unique. These are
normally written as {element0, element1,…}

 a := {4,1,-11,17}
{17,-11,1,4}

Note that the order is not specified. If you need order and the ability to access individual elements)
consider using lists or stems. Sets are treated as elements in their own right (hence no trailing period
which is an index operator). Operations on sets are

operator name example Result

|^, ⊢ convert list to set |^[;5] {0,1,2,3,4}

/\ ,∩ intersection {1,2,3} /\ {2,4,6} {2}

\/ ,∪ union {1,2,3} \/ {2,4,6} {1,2,3,4,6}

/ difference {1,2,3}/{2,4,6} {1.3}

%, ∆ symmetric
difference

{1,2,3}%{2,4,6} {1,3,4,6}

== equality {1,2,3} == {3,1,2} true

<, >, <=, >= Set inclusion. {1,2} < {1,2,3} true

, ∈ ∉ set membership 1 a, [1,5] a∈ ∈ true, [true, false]

~ convert set to list ~{1,2,3} [1,2,3]

Notes

• |^ converts a list or scalar to a set. ~ (monadic tilde) applied to a set turns it into a list. If the set
is nested, the resulting list will be too. You can use the operator ⊢ (\u22a2) or its digraph |> for
this interchangeably. Note that ~A ≠ ~ A⊢ ⊢ in general since the order of sets is not guaranteed
(and sets have unique elements only). Of course, you can just type in a the elements of the set
between {}, e.g. {2,4,6}

• Union and intersection are either the unicode symbols, ∩ (\u2229) or (\u222a), or may be ∪
ascii digraphs made of \ and /, viz /\ is intersection and \/ is union.

• Symmetric difference is either done with the % sign or the operator ∆ (\u2206).

• Order of operations is that union and intersection are at the same level, so will be interpreted
from right to left in order when encountered. These are higher in precedence than symmetric
difference. There is no actual universally agreed on order of operations. This is chosen because
under symmetric difference and intersection, sets form a Boolean ring and symmetric difference
is the analog to addition, union to multiplication.

• Note about the empty set. This is denoted by {}. Note that the empty stem is an empty list,
denoted by []. You may also use the symbol (\u2205) for this. ∅

• Sets are generally quite fast in their operation and have minimal structure. While you can have
sets of sets, the onus is on you to make sense of them. Generally sets of scalars and sets of sets
of these are never a problem. Sets of stems have the issue that comparing stems (which can be
recursive) is at best dicey.

• Scalar operations on sets apply to each element (similar to stems).

• Operations on sets such as intersection, ordering, membership apply to whole sets.

• Selecting elements is done with the subset function.

• Comparisons are done with the standard <, > etc. be advised that these are strict, so A < A will
always fail, but A == A or A <= A will work.

• a b∈ can be fully replaced with the function has_value(a,b), however, a∉b must be replaced
with !has_value(a,b).

Example. Scalar operations on sets

Scalar operations on sets return a set with the operator applied to each element:

 3+{2,4,6}
{9,5,7}
 4<{1,2,3,4,5,6,7,8,9}
{true,false}

In the last case, the less than operator is applied to each element of the set and the result is added to the
answer. Since true and false are repeated, the final answer has at most two elements. Again, there is no
order possible with a set. If you convert one to being a list (with the monadic tilde operator) then you
should check on the order of the resulting list.

Stems
A compound variable is embodied in what is termed stem variables. These are of the form

head.tail

(Geeky stuff, the period is actually called either reference or the child-of operator.) Remember that
the variable is head. (note the trailing period!!) and the tail – which may be complicated -- is just
indexing. The tail consists of scalars separated by periods, but see the section below on tail resolution
for the full story. Pretty much anything but a dot can be used as part of the name in the tail. This
effectively means that a stem can be something as simple as a list or quite a complex data structure
indeed. As a matter of fact, any data structure an be modeled with a stem. The index is any string and
we usually refer to them as keys. Some definitions:

• A list is a stem whose keys are non-negative integers
• Two stems are conformable if they have the same keys
• Tail resolution means that if a stem has many indices, like a.b.c.d, then it is resolved from right

to left, with the system checking each index to see if that variable has been defined, then
substituting. You may have stems embedded.

• Subsetting is in effect for most stem operations. This means that if the result is a stem, it
contains only the keys common to its arguments. If two stems are conformable, no subsetting is
needed.

• The dimension of a stem is the actual number of independent indices The rank of a stem is the
number of dimensions. Scalars have rank 0, stems have 0 < rank. The axis of a stem refers to

which dimension. The axis starts at 0 (as in, every stem has a 0 or first axis). The size of an axis
is the number of elements in that axis.

• Wrap around for list indices is supported. This means that negative indices count from the end
of a list. x.(-1) is the last element in the list, x.(-2) is the next to last, etc.

• Unknown variables are replaced with the identical constant. So if foo is undefined, then
x.foo and x.'foo' are identical. However, if you set foo to be a value, that will be used.

Example

In [1,2,3], the rank is 1 and there is one axis, zero and the size is 3,

In

x.:=[// axis 0 are the rows
 [1,2], // axis 1 are the columns
 [3,4],
 [5,6],
]

The rank is 2. size(x.) is 3, size(x.0) is 2. And for names

x.:=[// axis 0 are the rows
 [// axis 1 are the columns
 // data

y.:=[// axis 0 is box (1)
 [// axis 1 are the columns
 [// axis 2 are the rows
 // data

and you can nest boxes as you like.

 y. := n(3,4,5,6); // a rank 4 stem with 360 elements in it
 dim(y.)
[3,4,5,6]
 rank(y.)
4

Note that this is one of the very few strict pattern enforced in QDL – a stem must end in a period i.e, so
the period is an assertion that this refers to an aggregate. Issuing something like this (to make a list of
integers)

a := [1,2,3];

fails with a message like “Error: You cannot set a scalar variable to a stem value”. This
is because the item on the right is an aggregate, aka a stem and on the one on the left is a simple scalar.

Example

You can set the indices of stems either as constants:

 a.'time' := 'midnight';
a.'manner' := 'candlestick';
 a.'place' := 'library’;

or if the variables have not been defined, their name is used as the constant, so

 a.time := 'midnight';
a.manner := 'candlestick';
 a.place := 'library’;

is equivalent. Generally it is a good idea to stick with constants for things that are constant and reserve
variables for things that vary, but there are times where this is quite convenient.

There are two common use patterns. The first pattern is to invoke a function on a stem variable which
alters every element and returns a stem variable with the same keys, each element having been
transformed. Here is an example. This uses integer indices and this makes it a list. To populate it you
would just set the elements:

myList.0 := 'the';
myList.1 := 'quick';
myList.2 := 'brown';

 or perhaps, use the handy list notation:

myList. := ['the', 'quick', 'brown']

This effectively is an array (which is just a map whose keys are integers). The second use case comes
from having indices that are not indices, which allows you to make maps on the fly, with the index
being the key:

myMap.idp := 'https://idp.bigstate.edu/saml';
myMap.port := 636;
myMap.eppn := claims.sub + '@bigstate.edu';

or again in compact notation,

myMap. := {'idp':'https://idp.bigstate.edu/saml' , 'port': 636 , 'eppn':
claims.sub + '@bigstate.edu'}

In this case, there is now a map with keys, idp, port and eppn whose values are as above. Stem
variables have their own section later with more details. There are several operations supported on
them.

It is certainly possible to have mixed data, for instance

 my_stem.help := 'this is my stem'
 my_stem.~[;5]
[0,1,2,3,4]~{help:this is my stem}

which shows that this stem includes a list and has another entry called help.

http://idp.bigstate.edu/saml
mailto:'@bigstate.edu
http://idp.bigstate.edu/saml

Note: list indices are signed in QDL. This means that for index 0 <= k, the index is exactly the index.
For k < 0, the index is relative and will start from the other end of the list, effectively being length + k.
 a. := n(5)
 j : -1;
 a.j
4

This shows the first entry from the right, 5 + (-1) = 4.
 remove(a.j)
 a.
[0,1,2,3]

This removed the last entry and the list now has 4 entries, not 5.

Reading the printed output

In the last example, how to read the result printed? The general form is

[list] ~ {map}

where the list is an ordered set (hence no need to write down the indices, since they are 0,1,2…) and
the map has entries of the form

key : value

The tilde, ~, is a union operator and means these are a single entity. Note that this is a printed version
for human readability. So here, the key is help and the value is this is my stem. Note that if you create
a list with sparse or missing entries, (so sparse data means only creating the entries you need, not some,
vast empty array) then printing it will have the keys just written in map notation. Let us say you wanted
to keep a listing of your favorite places in a stem by zip code. Your first entry might be

 zip.99950 := 'Ketchikan'
 zip.
{99950:Ketchikan}

If we were to use [] notation, how would we represent the missing 99950 elements?

Example: sparse matrix

You can define a sparse matrix using a default value and just setting what you need.

 a.:={*:0}
 a.3.14 := 11;
 a.2.7 := -3
 a.1.1; // check default value
0
 a.^3
{
 2:{7:-27},
 3:{14:1331}
}

So e.g., a.2.7^3 == -27.

Tip: Renumbering lists

A common idiom to re-order all elements in a list from 0 and this is monadic ~:

~list.

Would take the elements of list. and restart the indices from 0. Since there is always subsetting
involved in operations and QDL preserves indices, some operation (like a reduce) that leaves you with
possible random indices may or may not need this.

Handling strange keys

Note that the index for a stem may be pretty much anything because you may pass around sets of
indices, but all references (e.g. what you type in) must be either integers or variables or literals. The
character set for variables is much smaller than for languages, so for tail resolution to work there are
two options. The easiest is to use a variable to avoid ambiguity. Let's say you wanted to make a stem
whose keys were your favorite functions, the first of which is 'f(x,y)' (which is a string, of course).
You would do something like

 p:='f(x,y)'
 q.p := 'cos(x)*sin(y)'
 q.
{
 f(x,y):cos(x)*sin(y)
}

but issuing q.f(x,y) is going to cause an error (since this is a function) vs.

q.'f(x,y)' := 'cos(x)*sin(y)'

Alternately, you may use encode/decode for type 0 which allows you to convert all unknown symbols
into an escape sequence, which is a valid variable. If you really need to have something you can type in
without variables consider using encode() to change a string to something that is a legitimate variable:

 encode('f(x,y)', 0)
f$28x$2Cy

Normally you only have to think about such things if you have to deal with exchanging information
between external programs.

Compact Notation

You may create lists and stems with the so-called compact notation. The basic syntax is for lists:

[x0, x1, x2, …]

which would make a stem with elements x0, x1, … and indices 0,1,2,… For stems

{key0:value0, key1:value1, …}

where the key are strings or integers and the values are arbitrary, including stems and lists. The most
important thing to remember is that you may populate these with variable and functions, so something
like

 [abs(-2), is_defined(arf)]
[2,false]

(and arf is not a defined function is this workspace).

Further examples

It is easy and convenient to use this notation. For instance this is fine

[2,4] + [3,5]
[5,9]

Note especially that you can populate these lists with any valid QDL expression, so here is a nested
array of random integers:

 mod([abs(random(2)), random()], 100)
[[5,20],39]

or even more baroque (and to show that these are “ragged” arrays, unlike many other languages):

 mod([random(5), [random(4), [random(3), random(2)], random()]], 1000)
[[-629,-531,575,-911,222],[[867,-91,-891,-196],[[-167,468,920],[573,-162]],987]]

Slice operators
There are two slice operators available.

Open slices

The open slice gives back elements from start to stop incremented by step.

[{start} ; stop {; step}]

Meaning that the result will be a list of elements that are constructed as

[start, start+step, start + 2*step, …]

and will continue until

• stop < start + n*step if 0 < step

• start + n*step < stop if step < 0

Notes

1. this is inclusive of start and exclusive of stop.

2. 0 == step will cause an error

3. omitting the first argument is the same as setting it to zero

4. omitting the last argument uses a default step of 1.

So in summary

[;5] == [0;5] == [0;5;1] == [;5;1]

E.g.s

 [0;5]
[0,1,2,3,4]
 [-2 ; 3 ; .75]
[-2,-1.25,-0.5,0.25,1,1.75,2.5]
 [5;0]
[5,4,3,2,1]

The major takeaway point is that you do not know how many elements there will be before evaluation:

 x. := [-π() ; π() ; sinh(.8)];
 size(x.)
8
 x.
[-3.14159265358979,-2.25348667140217,-1.36538068921455,-.477274707026927,
0.410831275160696,1.29893725734832,2.18704323953594,3.07514922172356]

 size([-pi() ; pi() ; sinh(.1)])
63

So note that in the first case there were 8 elements required, while the second took 63. Also, while the
zeroth element is guaranteed to be the first argument, the final one will be less than the second
argument. So here adding sinh(.8) to the last element would be larger than π, so it is not returned.

it is also possible to omit the step, in which case it is assumed to be 1:

 [2 ; 11]
[2,3,4,5,6,7,8,9,10,10]

Closed slices

The closed slice gives back n evenly distributed elements over an interval, including both endpoints.

[| {start} ; stop {; count} |]

Note that the digraphs of [| and |] are made to look like double brackets in unicode ⟦ and ⟧. If the start
value is omitted, it defaults to 0. If 0 < count is omitted, it defaults to 2 (returning the endpoints). Note
that there must always be at least a stop argument.

 [| -1;2;6 |]
[-1,-0.4,0.2,0.8,1.4,2]

This gives 6 numbers distributed over the interval -1 to 2. Note that the first argument and second
argument always are in the result. Just to emphasize how many elements you get back:

 size(-π() ; π() ; 9)⟦ ⟧
9

As expected, 9 elements were requested and 9 were returned. A comparison is
 ;5;5⟦ ⟧
[0,1.25,2.5,3.75,5]
 [;5;5]
[0]

In the first case, 5 elements are requested. In the second case, a step of 5 is requested and that leaves a
single element in the list.

 ;5⟦ ⟧
[0,5]

This is because the default start is 0, and the default count is 2, so single element closed slices are
always 2 points.

Slice Math

Let’s say you wanted to evaluate

sin([;1000]/100)

This takes 3 traversals of the list. One to create it, one to divide everything by 100 and one to evaluate
it. This scales poorly, so be sure to use the facts that

 [a;b;c]×n±1 == [a×n±1;b×n±1;c×n±1]
[a;b;c] ± x == [a ± x;b ± x;c]

 a;b;c ×n⟦ ⟧ ±1 == a×n⟦ ±1;b×n±1;c⟧
a;b;c ± x == a ± x;b ± x;c⟦ ⟧ ⟦ ⟧

 (Ahem remember that b×n±1 is another way to write b×n or b÷n. So rather than write the expression for
the sine above, this is better.

sin([;10;1/10])

The different slice operators exist so you can optimize creating different types of lists.

In general, function composition is you friend, so another option if you wanted to evaluate something
complex is to create a function to operate on each element.. E.g. let’s say you want to evaluate a
polynomial at 1000 points over [-1,1]. You could write
 a. := [;1000]/500 - 2
 b. := a.^3 + 4×a.^2 - a.÷7 +3

which takes 8 iterations through the loop, or define

 x. := [|-1;1;1000|]
 f(x)-> x^3 + 4×x^2 - x÷7 +3
 for_each(@f, x.) =: b.

which applies your function to each element of the list once. There are tradeoffs for speed. If your lists
are short, then evaluating f(a.) vs using for_each is probably not essential and there is more overhead
using for_each. If you are evaluating a million entries of a very complex expression, then for_each is
the way to go.

Benchmarking on the cheap can be done with date_ms like so

 start:=date_ms();for_each(@f, x.) =: b.;date_ms()-start
 219

which gives the number of ms this took to execute. The reason that b. is assigned is because the entire
result will print otherwise, which takes some time since an enormous list has to be formatted. Different
computer systems will have different speeds.

Default values for stems

You may set a default value for stems – this is a very nice thing indeed so you don't have to initialize
every element in one before using it. The way it works is either you create a special entry for the stem

 a.:= {*:2}
 a.0
2

Note that the key here is a * (not the character ‘*’ which represents any key it does not recognize) or
you issue a command

set_default(stem., scalar);

where the scalar is any scalar. Then from that point forward, any time a value is accessed, if it has not
been explicitly set, the default is returned. If the stem does not exist, it will be created. Note that
subsequent operations on the stem do not alter the default value.

E.g.

 set_default(stem., 2)
 stem.woof
2
 stem.'woof' := 4;

 stem.'woof'
4
 2 == stem.'arf'
true

The advantage of using the * entry is that it may be treated exactly like any other stem entry. If there is
a default entry it will be listed when you print the stem.
 a.:={‘p’:’q’, ‘r’:’s’}
 set_default(a., ‘t’)
 a.
{*:t, p:q,r:s}
 a.0 == ‘t’ && a.p == q
true

Applying scalars to stems

A scalar is a simple value. All of the basic operations in QDL work on stems as aggregates. (So called
“freshman algebra.”) So for instance, if you needed to make a list counting by 3's, you could issue

 3*n(5);
[0,3,6,9,12]

 So lets say we have the following:

 ring.find := 'One Ring to find them';
 ring.rule := 'One Ring to rule them all';
 ring.bring := 'One Ring to bring them all';
 ring.bind := 'and in the darkness bind them';

Let's find every element that contains the word 'One”, respecting case:

 say(contains(ring., 'One'));
{bind:false, find:true, bring:true, rule:true}

Or for that matter, doesn't contain this word:

 say(!contains(ring., 'One'));
{bind:true, find:false, bring:false, rule:false}

The output of these functions is a boolean-valued stem and there is a very useful function called mask
which simply will return the elements that have corresponding true values.

 say(mask(ring., contains(ring., 'One')));
{find:One Ring to find them,
 bring:One Ring to bring them all,
 rule:One Ring to rule them all}

And of course you could just find the ones that don't have the word “One” in them:

 say(mask(ring., !contains(ring., 'One')));
{bind:and in the darkness bind them}

This points out that using stems can do a tremendous amount of work for you. Since QDL is interpreted
(each line is read, then parsed and executed) having as much happen as possible with a command
improves both performance and efficiency. Besides, working with aggregates is often much ore
intuitive than slogging through each element.

Tail substitutions.

If you have defined a variable, say

k := 3;
my_var. := n(5);

and issue the following

my_var.k := 'foo';

Then this will result in my_var.3 being equal to the string 'foo'. In short if the tail has a value at that
point, this is used first. If not, then the tail itself as a string is used. This lets you do things like

i := 0;
while[
 i < 5
]do[
 say('the value = ' + my_var.i);
 i++;
];

which prints out

the value = 0
the value = 1
the value = 2
the value = foo
the value = 4

Moreover, substitutions happen from right to left (!! backwards from reading order), so if you set

 x := 0;
y.0 := 1;
z.1 := 2;
w.2 := 3;

Then you could reference a value like

w.z.y.x

which would resolve to

w.2 == w.z.y.x == 3

This permits more readable values, e.g. time.manner.place is a perfectly fine reference. HOWEVER
the stem is always the leftmost symbol. The rest are just a very compact way to index it.

So why do this? Because it allows for something very powerful: implicit looping. You can have stems
do a tremendous amount of work without ever really having to access the elements.

A Small Example.

 a. := abs(mod(random(1000000),1000000));
 a.42
769942

That's 1 million random numbers in the range of 0 to 1000000 and we showed the 42nd value just
because. Here's a polynomial:

 a. := a.^2 + 3*a. -4;
 a.42
592812993186

and if you insist, here is a check

 769942^2 + 3*769942 - 4
592812993186

You may also have indices with embedded periods, so in the above example

 foo:= ‘z.y.x’;
 w.foo;
3

You can then take a list of indices and simply iterate over them or whatever you need to do. This again
is why keys for stems generally do not allow for embedded periods.

Although you can do something like this:
 a := 2.3
 q.a := 4
 q.2.3 := 5
 q.
{2.3:4,2:{3:5}}
 q.a
4
 q.2.3
5

where there is a decimal index, it can get confusing.

More about that trailing period.

 To refer to a stem as an aggregate (everything) you must include the period. This is a perfectly fine
example

 a.0 := 'foo';
 a.1 := 'bar';
 a.2 := 'baz';

 a := 2; // so this is a scalar – no period at the end

 say(a.a);
baz

Here the scalar a has value of 2 which is substituted as the tail of the stem, so the answer printed is the
value of a.2. This just points out that a and a. are considered to be wholly unrelated.

Note that this is exactly like most other programming languages (e.g. C, C++. Java). For instance this a
perfectly fine program in C:

#include <stdio.h>
int main()
{
 float a[3];
 float a;
 // bunch of stuff

 a[0] = a;

 return 0;
}

 in which an array and a variable may have the same name and are differentiated by indexing, e.g., a vs.
a[]. QDL simply has a very flexible approach to indices. Another way to think of stems is as “ragged
arrays”, where entries may be of differing lengths per index.

You may nest stems as well, so

 a. := 3 * n(5); // count by 3's, so 0,3,6, … ,12
 b. := 10 * n(5);// count by 10's so 0,10, … ,40

a.b. := b.;

works just fine. Note that unless b has been assigned a value, the index of it in a. is b. You can access
the value as

c. := a.b.; // note the trailing . on the variable c to show it is stem

but you cannot issue a.b.3 and expect to get anything back (b.3 == 30 which is not an index in a.)
unless you have set it explicitly. This is because, again, it is included in the stem variable a. as an entry
and you must refer to it by its proper index. TL;DR: Tail resolution happens for scalars.

Cavet on name collisions

Since tail resolution is always in effect, do take care with your variable names. For instance, if you
decide everything in your X workspace is named x, x., etc. then you may unwittingly re-use the same
name, so trying to set your stem to have a key of ’x’ by setting x.x.0 := ... to something is going
to give you an index error, since the middle x. introduces a recursive structure (which you can do in
QDL fine). There are a couple of ways around this.

1. Use literals: x.’x’.0 := …

2. Use another variable: my_x := ’x’; x.my_x.0 :=…

3. Use better names. Is it really descriptive to have everything named x or some variant of that? This is
a good point since you do want things to be self-documenting so when you pass off the workspace to
someone else or come back to it after a hiatus you don’t just have a mass of variables and functions that
have no clear purpose or meaning.

Generally if you are having such name collisions that is a symptom that things are not named clearly or
are not structured clearly. Stems are an extremely powerful paradigm, essentially turning aggregates
into miniature databases (including doing queries on them with the query() command) and should be
viewed in that light.

Also remember that parentheses can be (and should at times) be used to direct the order of tail
resolution: x.(x).(x).(x) would tell QDL to use the value of x for tail resolutions, not x. as is the
contract (when resolving tails, look for stems first, and only look for scalars if there is no

The ~ and union operator

There is a specific operator in QDL for stems (sets have their own operators), the tilde or ~ operator.
This concatenates stems. There is a function version of it too called union (see below for more
documentation). What does it do? It sticks together two stems.

 [1,2]~[3,4]
[1,2,3,4]

In this case, the two lists [1,2] and [3,4] are assembled into a single list [1,2,3,4]. It will also turn
scalars into a list:

 1~'a'~true
[1,a,true]

This works with stems generally:

 a.b := 'foo';a.c:='bar';
 b.q:='baz';b.c := 'quxx';
 a.~b.
{
 q:baz,
 b:foo,
 c:quxx
}

Caveat in the case of lists (integer indices), the list is extended. In the case of stems with non-integer
values, they cannot be extrapolated, so if the same key is encountered, the value is overwritten.

Also, the result from this operation will be a regular list, so indices will be adjusted.

 q.17 := 3
 q. ~[1,2]
{
 17:3,

 18:1,
 19:2
}
 union(q., [1,2])
[3,1,2]

One difference between this and the union function is that the union function reorders everything.

 named stem.)

Other stem expressions
1. You can embed expressions in the indices, but have to be very clear about how it should be grouped.
This means parentheses are your friend.

 k:=1;
 [i(5),i(4)].k

would return

[0,1,2,3]

You must, however, be careful. Since the . the child-of operator, so things between dots are arguments
to this operator. (Note well that “child of” works in English if you read stems from right to left.)

The full contract for stem resolution assumes that all elements are resolved to stems first. So in

a.b.c.d

b and c will be tried as stems and if there are no such stems, then their scalar values will be used. If
there are no such values, the value of the argument is simply returned. Let us say that you had both
variables b. and b in the workspace and you really wanted to force that the scalar be used. Simply put it
in parentheses (so it is evaluated first):

a.(b).c.d

You can also set expressions to a value. So you can do something like this

 a. := [-n(5), n(6)^2];
 f()-> a.;
 f().i(1).i(2) := 100;
 f();
[[0,-1,-2,-3,-4],[0,1,100,4,9,25]]

(Of course, i(x) is the identity function which just hands back x. Of course, this is slightly contrived to
have f() return a stem, but the point is that as long as the expression on the left-hand side of the
assignment evaluates to something reasonable, you may set it. One last caveat is an expression like

 to_uri('a:/b').path := 'foo'

is certainly legal and works, but read what it did: It parsed a uri and in that result set a single value to
foo. If the intent was to replace the path with a new value, this won’t work either

 a. := to_uri('a:/b').path := 'foo'

because the right hand side is a scalar. generally, variables exist to stash things we want later, so the
right way to do it is

 a. := to_uri('a:/b');
 a.path := 'foo';

Now a. has in it what you want.

2. Recursion works but don't try to print.

You may certainly make a stem refer to itself:

 a. := [;5];
 a.b. := a.;
 say(a.b.2);
2

You can access elements directly as you wish though avoid tail resolution unless you – like any other
recursive structure – have a well thought out plan to access things. In the above example, a.b.2 is
defined so there is no tail resolution needed. But do not try to print it because if you do you will get

 say(a.);
Error: recursive overflow at index 'b.'

Other ways to access stem elements.

Stems as indices: Index lists

You may use stems as indices too. An example should suffice

 a. := {'p':'x', 'q':'y', 'r':5, 's':[2,4,6], 't':{'m':true,'n':345.345}};
 a.s.0 == a.['s',0]
true

If a list is used as an index on a stem, then it is referred to as an index list or a multi-index. In other
words a.x.y. … z == a.[x,y, … ,z]. Why? Because you can then create index lists dynamically.
Using the . notation is great if you know the structure of the stem already, but if, for instance you have
done a query() command to an unknown stem and now have a collection of multi-indices, you can
access the elements. A great utility is m_indices in the extensions, if you have loaded them.

Caveat. In normal stem resolution, every stem is resolved to indices on its right. Let’s say you wanted
to access

a.4.3.2.1

using a list index. If you enter

a.[4,3,2].1

this resolves as

a.3

since

[4,3,2].1 == 3

Other ways to write this are

(a.[4,3,2]).1 == a.([4,3,2]~1)

Various functions either take multi-indices as their arguments (such as remap) or produce them as their
results (such as indices).

The extraction operator

A common scenario is to have a large and very complex stem (for instance, writing a web application
and getting some monstrous JSON object that you have turned in to a stem). The extraction operators,
\, \!, \>, \!> allow you to specify which elements to take from a given dimension to form another
stem.

Motivational Example

Let us say that you got that JSON object and that it’s structure looks like this:

web.content.server.clients.i.transactions.j

So that in reality, i and j are the really interesting bits. In particular. there are many transactions but they
all contain an identifier like uuid. Rather than slogging through the whole thing repeatedly, QDL lets
you write this.

 a. := web\'content'\'server'\'clients'*\'transactions'\0\'uuid'
 a.
[bc5c7110-f932-11ec-b939-0242ac120002
bc5c72fa-f932-11ec-b939-0242ac120002
bc5c7624-f932-11ec-b939-0242ac120002
bc5c7750-f932-11ec-b939-0242ac120002
bc5c785e-f932-11ec-b939-0242ac120002]

The result is a simple list of the uuids, one per client. The constants are omitted from the final result. *
means to take everything in that dimension (here clients has 5 elements). The 0 means to take only the
zero-th transaction.

You may use \ or \! the difference is that ! indicated preserving the indices as they are, otherwise for
integers, they are automatically renumbered. This allows you to extract a substem with the indices
intact if that is needed.

 b. := n(4,5,[;20])
 b\![1,3]\![2, 0]
{1:{0:5, 2:7}, 3:{0:15, 2:17}}

Note that the the result has the same indices as a., it is just a substem. So a.1.2 == b.1.2, etc.

 b\[1,3]\[2, 0]
[[7,5],[17,15]]

Do note one other thing: The order of the last dimension was swapped, which in this case means that
the substem has re-ordered the elements. In the strict case no re-ordering can occur since the indices are
not altered.

 b\[1]\[1,3]
[[6,8]]

Since the value of 1 is a list, the result has that dimension, so it is a 1x2 stem.

Creating extractions on the fly with \>, \>! and star()

You may also create a list of indices and tell QDL to interpret each element separately using \>. The >
in effect tells QDL to distribute the \ to each element. So our above example could be written

a. := web\>['content','server','clients',star(),'transactions',0,'uuid']

Note that * may be replaced in extraction with the function star(). You may also use it in expressions
like
 a*
 a\star()

Notes

• \!* is legal, but has no effect since all indices are taken

• \!scalar has no effect since scalars are never returned in the final result

• \![scalar] is trivial and equivalent to \[scalar] since there is only one element.

• \!>, \> applies to every member of the list. Note that elements of lists must all be defined,
since lists are evaluated first, then handed over to the operator.

• substems are extracted from the original, meaning the values are copied, so changing values in
the substem does not effect the original stem.

• Sets may also be used as arguments. However, since there is no guarantee of order set elements,
using strict mode may still not be strict. If you want order, impose it.

• Just like the reference operator . (dot) you may use variable names which will helpfully be
replace the name as its value if that variable has not been defined. So a\p* == a\'p'* if and
only if p has not been defined, otherwise the value of the variable p will be used. As with
stems generally, it is certainly convenient, but one should stick with constants where there are
constant.

• You may also use the full reference to a stem with or without the dot, a.\p and a\p are the
same

• Missing indices are fine – they just won’t have values associated with them. So if you enter
b\[1,37]*

and there is no index 37, there will not be an error. This allows you to work with very
sparse/ragged stems without having to check for conformability. Ask for everything, see what is
actually there.

• Responses are stems, scalars (if all the indices are scalars) or null (if no elements of any sort
were found for scalars, empty stem if some of the indices are lists).

The environment and the lifecycle of variables.
Every script has both global and local variables associated with it. Variables defined in a block (such as
in the body of a loop or in the body of a conditional statement) are local to that block. Variables defined
outside that block are global to the program. Modules are completely self-contained.

So what if you need to have variable defined and accessible outside a block but need to set the value
inside one, like

 if [/* nasty conditions */]
then [a := 'foo';]
else [a := 'bar';];
 // trying to use a will result in errors

What you can do is set the value to null outside the block. So do this.

a := null;
// same code as above

Now attempts to use the variable will work properly. You may also check if the value has been set by
checking if it is null:

 if [a != null]
then [/* lots of stuff */];

Visibility during function evaluation
Generally functions inherit the values of their parent state, but they do not inherit imported symbols.
Following Leibnitz’'lead, a function is to relate cause (the inputs) to effect (the output). Therefore,

functions should have their values passed to them and not draw them in willy-nilly e.g. as global
values. You may, of course, just import modules in the body of the function or pass the values in as
arguments. Note that the arguments to the function are executed in the function state, so

 f(x)->a*x^2
 f(a:=3)
27
 is_defined(a)
false

The value of a is passed in and set inside the function where it is used. It is not set in outside the
function. This allows further fine control over the state

Control structures
There are 6 basic control structures. All of them are delimited with brackets [].

1. The basic conditional of
if[condition]then[. . .]else[. . .];
Note that the else clause is optional.

2. Switch statements (which are lists of conditionals) of
switch[...]

3. try[. . .]catch[. . .]; for error handling

4. Looping construct while[condition]do[. . .];

5. Assertion construct assert[boolean][expression]; or its alternate
 boolean : expression;⊨

6. Block: block[...]

The if..then..else statement
The basic format is

 if [condition]
then [/*statememts*/]
else [/* more statements*/];

Note that then is optional, but else is not. And of course, a simple example is in order:

j :=5;
 if [j <5 || 5 < j]
 then [

 say(j + ' is not 5');
]
 else [
 say('j is ' + j);
];

j is 5

Note that you can format these any which way you want. I just think it is more readable this way.

The switch statement
Branched decision-making is a basic construction for most languages. In the case of QDL, there is the
switch[]; construct. The basic format is

switch[
 if[condition1]then[body1];
 if[condition2]then[body2];
 if[condition3]then[body3];
 //… arbitrarily many
 if[true][body]; // default case
];

The execution is each condition is checked and as soon as one returns true that body is executed and
the construct returns.

Examples

An example of a switch statement might be

 i := 11;
 switch[
 if[i<5][var.foo := 'bar';];
 if[5=i][var.foo := 'fnord';];
 if[5<i][var.foo := 'blarf';];
];
 say(var.foo);
blarf

(Optional then keyword omitted.) Note that the elements of the switch statement are if..then blocks
(including final semicolon). No else clauses will be accepted. Whitespace aside of strings, of course, is
ignored.

Example: Setting a default case

Many languages with a switch construct have a “default” clause which should be done if no other cases
apply. QDL does not since it is really easy to set one up otherwise. Since the conditionals in the switch
block are executed in order, if you want the cases to fall through to a default, simply have the last one
test for true:

 i := 11;
 switch[
 if[5<i<8][var.foo := 'bar';];

 if [5=i][var.foo := 'fnord';];
 if[2<i<5][var.foo := 'blarf';];
 if [true][var.foo := 'woof';];
];
 say(var.foo);
woof

Since none of the other cases apply, it falls through to the last.

Error handling
There is a try … catch block construction. Its format is

try[
 // statements;
]catch[
 // statements;
];

You enclose statements in a try block and call raise_error if there is an exceptional case. Note that
unlike many languages, all exception are fail-fast, so there is no way to hop back at the point of the
error and resume processing. An example

j := 42;
try[
 remainder := mod(j, 5);
 if[remainder == 0][say('A remainder of 0 is fine.');];
 if[remainder == 4][say('A remainder of 4 is fine.');];
 if[remainder == 1][raise_error(j + ' not divisible by 5, R==1', 1);];
 if[remainder == 2][raise_error(j + ' not divisible by 5, R==2', 2);];
 if[remainder == 3][raise_error(j + ' not divisible by 5, R==3', 3);];
]catch[
 if[error_code == 1][say(error_message);];
 if[error_code == 2][say(error_message);];
 if[error_code == 3][say(error_message);];
]; // end catch block
42 not divisible by 5, R==2

So the way these work is if a certain condition is met, you call the raise_error function with a
message and optional numeric value. These are available in the catch block so you can figure out which
error was raised and deal with it. Not much else to them.

There are two reserved error codes. For an assertion (see the entry for the assert keyword) the code is -
2. For every other system error the is value -1. This last value is issued by the system if there is an
internal error during processing. The message is intended to be helpful at this point, but may also not
be (since it is being propagated from some other component).

Example. System errors.

In this example, we create an error in the course of normal processing and catch it:

 try[3/0;]catch[if[error_code==-1]then[say(error_message);];];

/ by zero

Note that this will not catch parsing errors, so if you did something like

 try[2+;]catch[say(error_message);];
syntax error:could not parse input

(the body of the try statement has a syntax error in it) it would not get caught because the parser would
intercept it first.

Another example. User input

You can also use this for checking user input

 my_number := -1;
 try[my_number := to_number(scan('enter value>'));]catch[say('That is no
number!');];
enter value>foo
That is no number!

In this case if the user enters something unparseable as a number, a message is printed, but it would be
easy to simply re-ask the user. (Caveat: The example as is does not work reliably in ANSI mode
depending on the underlying system implementation. Break up the scan and to_number check into
separate lines.)

Example: Assertions

Assertions are treated like exceptions since they may be thrown anywhere. These simply have a
reserved code of -2:

 try[assert[3==4]['foo'];]catch[say(error_message);]
foo

If you needed to handle assertions in a script you might want to do something like this:

session_id := 0;
try[
 session_id := script_load('logon.qdl', username, password);
]catch[
 if[
 error_code == -2
][
 say(error_message + ': logging in as guest');
 session_id := script_load('logon.qdl', 'guest' , '');
];
];
 // bunch of other stuff

In this case a login is attempted and if that fails, a default is used. For assertions, the error_message
is simply the message clause of the assert statement.

Related functions

raise_error

Description

Raises an error conditions and passes control to the catch block. Note that you may raise errors outside
of a try[. . .]catch[. . .] block, but while it will interrupt processing, that’s about it. This is
useful in function definitions where you e.g., check the arguments and raise an error if there is a bad
one. You don’t want to catch that inside the function because you are communicating it to whatever
called your function.

Usage
raise_error(message, [code, [state.]);

Arguments

message a human readable message that describes this error

code a user-defined integer that tells what this code is. The value of -1 is reserved by the system for
system errors. If you raise an error but do not set it, it is by default 0. You may use any other value you
like, though as a convention stick to non-zero integers. This reserved value is available in constants()
under error_codes.system_error and error_codes.default_user_error resp.

state. A user-defined stem that holds useful information. Nothing is returned by default and this is
wholly user created. If you wish to pass along state, you must specify a code as well.

Output

None directly. The values are set to error_message and error_code (if present) and are accessible in
the catch block. Typically, you define the error code and look for it in the catch block.

Examples
try[
 if[3 == 4]then[raise_error('oops', 2);];
]catch[
 say(error_message);
 switch[
 if[error_code == 2]then[...];
 // maybe a bunch of other errors
]; // end switch

]
oops

Use in a function

define[
 my_func(x)
][
 if[x <= 0][raise_error('my_func: the argument must be positive', 1);];
 // ..rock on
];

 Since there is no catch block per se you can use any return code you like. The use of this is that if you
were to make a call like

my_func(-2)^.5

an error would get raised in my_func rather than perhaps someplace else. This lets you control where
exceptions were raised.

Looping.
The basic structure of a loop is

while[
 logical condition
]do[or][
 statements
];

Note that the do keyword is optional. For example, to print out the numbers from 0 to 5:

i := 0;
while[i< 5][say(i++);];

0
1
2
3
4

This is known as 'yer basic loop'. You may also loop over sets:

 a:=6
 while[j {1,2,3,4,5}][a:=a*j;]∈
 a
720

Note that set membership works the same with the has_value functional
 a:=6
 while[has_value(j,{1,2,3,4,5})][a:=a*j;]
 a
720

Also note that it is not possible to loop over since that makes no sense.∉

Style issues

This is an example of bad QDL:

y. := null
while[for_next(j, 100)][y.j := sin(j/100);]

This just fills up a variable, y., with values.

Good QDL:

y. := sin([;1;1/100]);

QDL does array processing just fine. Loops are usually not needed for most operations and they have a
fair bit of overhead so do use them with discretion. When you write functions, opt for list processing as
well.

Related Functions

break

Description

Interrupt loop processing by exiting the loop.

Usage
break();

Arguments

None.

Output

None.

Examples

In this example, the loop terminates if the variable equals 3.

while[
 for_next(j,5)
][
 if[
 j==3
]then[
 break();
]else[

 say('j='+j);
]; // end if
]; // end loop
j=0
j=1
j=2

check_after

Description

Sometimes only a post-positional loop will do – this means that the loop executes at least once. This is
not often the case, but is very hard to replicate. Invoking this function will do just that. Your condition
will be checked post-loop.

Usage
check_after(condition);

Arguments

The argument is a logically -valued expression.

Output

None. This exists only in looping statements

a := 0;
while[
 check_after(a != 0)
][
 say(a);
];
0

continue

Description

During loop execution, skip to the next iteration.

Usage
continue();

Arguments

None.

Output

None.

Examples

In this example, the loop skips to the next iteration is the variable is 3.

while[
 for_next(j,5)
][
 if[
 j==3
][
 continue();
]else[
 say('j='+j);
]; // end if
]; // end loop
j=0
j=1
j=2
j=4

for_keys

Description

This is a non-deterministic loop over the keys in a stem variable. All the keys will be visited, but there
is no guarantee of the order. Also the keys are strings unlike for_next where they are integers.

Usage
for_keys(var, stem.);

Arguments

var is a simple variable and will contain the current key during the loop. If it has already been defined,
its values will be over-written.

stem is a stem variable. The keys of this stem will be assigned to the var and may be accessed.

Output

Nothing. This is only used in looping constructions.

Example
 my.foo := 'bar';
 my.a := 32;
 my.b := 'hi';
 my.c := -0.432;
 while[for_keys(j,my.)]do[say('key=' + j + ', value=' + my.j);];

key=a, value=32
key=b, value=hi
key=c, value=-0.432
key=foo, value=bar

for_lines

Description

This allows for reading a text file one line at a time. It only works in a loop.

Usage

for_lines(var, file_path)

Arguments

var - the name of the variable

file_path - the path to the file

Output

This only exists in loops.

Example

If you had a file name /tmp/mystery.txt

 while[for_lines(x, /tmp/mystery.txt)][say(x);]
I can’t help thinking:
Why is “abbreviation”
A very long word?

This example just prints out each line. The intent of this is for processing very large files, since the
other option is to read the file in as a string or stem which may be slow or unwieldy.

for_next

Description

This allows for a deterministic loop and will run through a set of integers.

Usage
for_next(var, stop_value, [start_value, increment]);
for_next(var, arg.)

Arguments

Only the first two are required. The two cases are

First

var the variable to be used. As the loop is executed, this value will change.

stop_value the final value for the loop. When the variable acquires this value, the loop is terminated
(so the loop body does not execute with this value!)

start_value (optional, default is 0). The first value assigned to var.

increment (optional, default is 1). How much the loop variable should be incremented on each
iteration.

Second

var - the variable to be used. As the loop is executed, this value will change.

arg. - A list which will be iterated over, returning each value in the list.

Output

None. This only is used in loops.

Examples

A simple loop

while[
 for_next(j,5)
]do[
 say(j);
];
0
1
2
3
4

Another common way to use a loop is to decrement. Here it ends at zero, starts at 5 and the increment
is negative, hence it counts down:

while[
 for_next(k, 0, 5, -1)
]do[
 say(k);
];
5
4
3
2
1

A list example.

 while[for_next(i,2*[;5])][say(i);]
0
2
4
6
8

Each value of the list is set to i in turn.

And here is an example of looping through the elements of a stem variable.

// Set the values initially
my_stem.0 := 'mairzy';
my_stem.1 := 'doats';
my_stem.2 := 'and';
my_stem.3 := 'dozey';
my_stem.4 := 'doats';

 while[for_next(x,my_stem.)][say(x);]
mairzy
doats
and
dozey
doats

has_value or ∈

Description

Loop over the values of a stem or set

Usage

has_value(var, stem.|set) or var stem. | set∈

Arguments

var - the variable to be referenced in the body of the loop

stem. or set - either a stem or a set.

Output

In loops, nothing. This may also be used generally, see below.

Example

Use the fibonacci function in the math extensions module to generate the first 25 Fibonacci numbers,
then pick the even ones and print those out. Here pick returns a set and the values of that are iterated
over.

 while[j pick((x)->mod(x,2)==0, fibonacci([;25]))][say(j);]∈
0
2
8
34
144
610
2584
10946
46368

Scope

Definitions
Scope refers to the specific context where code resides/executes. There is lexical scope which is the
part of the source code where the item exists and there is dynamic scope which where the item exists as
the code executes.

Example
f(x)→x+1;

The lexical scope is that x exists in the definition of the function (on the lefty hand side of the arrow)
and in the single statement on the right hand side. Since this function is now available in the
workspace, its dynamic scope is everywere.

Overriding scope.
QDL allows for scopes to be overridden. Consider the block command

local[…]

this means that statements inside the brackets have nothing to do with the external environment, so

 a := 3;
 local[say(a);];
unknown symbol 'a' At (2, 10)

Why do this? Because you might not want the symbol table littered with variables and functions that
are just needed for a specific task. Note the following behavior especially:

 local[a:=11;z:=4;say(a+z);];
15
 a
3

i.e., The a inside the local block has nothing to do with the a outside the block

On the other hand

block[…];

will inherit the current (or ambient) scope but new definitions inside the block are local to it.

 a:=3;
 block[z:=4;say(a+z);];
7
 say(z);
unknown symbol 'z' At (1, 4)
 a
4

So z exists solely in the block, but since a existed before it is re-assigned.

In the sequel, functions and modules have their own scopes (discussed in detail). In telegraphic form
(hey, this is a reference manual)

define[] uses local[]

→ uses block[]

module[] uses local[]

Defining functions

Functions in QDL
QDL is mostly what is termed a functional programming language which means that mostly you define
functions and carry out tasks invoking or composing them. You may pass them as arguments to other
functions, for instance. Since QDL allows in situ definitions of functions, they must be defined in the
code before they are used, unlike some languages that let you put them any place. This gives enormous
flexibility in managing them.

Example. Comparing QDL to another language.

Here we create an array of n numbers, double each of them, then add up the contents of the array and
store it in a variable named sum would look like this is Java:

n = 10; // for instance
int[] array = new int[10];
int sum = 0;
for(int i = 0; i < n; i++){
 array[i] = 2 * (1+i);
 sum = sum + array[i];
}

In QDL:

 n :=10; array.:=null; // define array. here so it’s not local to the function.
 sum := reduce(@+, array.:=2*(1+[;n]));

Functions are very easy to create (especially using the () -> syntax). There are, unlike many pure
functional language, constructs for loops and conditionals, but QDL uses list processing wherever
possible, so by and large, you mostly need to describe what you want to happen to your data (such as
above, where you reduce it in one fell swoop). It is therefore best to think of QDL as a notation for
describing algorithms that happens to have some control structures. Why? Because frankly some
problems are very easy to describe in the functional paradigm and some are not. QDL is designed so
that if you need to make a clearly defined structure it is possible. Such things in a purely functional
language can be very awkward indeed to express.

Defining a function with the full formal syntax
The formal or full syntax for defining a function is very simple:

define[
 signature
]body[or][
 === useful comments
 statements
];

Note that within the body, any variables defined are local to that block unless they are save, e.g. in the
environment. The state is new so that only variables passed in are available. The variables in the
signature are populated with the values (which are copied) from the ambient. To return a value, invoke
the method return – which is only allowed inside function definitions, by the way. No return statement
implies there is no output from the function.

The signature of a function is

name(arg0, arg1, arg2,…)

this means that the function is defined by its name. Of course, if you define it in a module, you may
have to qualify it.

An example

define[
 sum(a, b)
]body[
 » add a pair of integers and return the sum.
 return(a+b); // this terminates execution and returns the value.
];

say('the sum of 3 and 4 is ' + sum(3,4));

This prints

the sum of 3 and 4 is 7

You may use functions any place in your code once they have been defined, so it is a good practice to
put them at the beginning.

Also, note that this example works on both scalars and stems: The signature does not determine the
type, so

 sum([1,2,'abc'],[5,7,'dgoldfish'])
[6,9,abcdgoldfish]

is just fine.

Example

Note: If your signature contains stems, then passing it a non-stem will be caught and flagged as an
error. You do this if you require a stem in a certain position. If you do not specify, then you can pass
anything as an argument,

 define[glom(p.)][return(p.~[;5]);]
 glom(2)
illegal argument:error: a stem was expected

 define[glom2(p)][return(p~[;5]);]
 glom2(2)
[2,0,1,2,3,4]
 glom2([11,12])
[11,12,0,1,2,3,4]

You may access the variable as p (not p.) in the function, but indexing still works the same, so p.0.1
would be fine.

Help
The lines that start with » (unicode \u00bb) or === (triple equals sign) at the beginning of the body
are read by the system as help and can be accessed using)help function_name arg_count. So for
the example above

)help sum 2
add a pair of integers and return the sum.

This allows you to document your function and generate online help in one step. There is a much more
complete section below, but this is important enough to mention twice.

Overloading
Overloading a function refers to having various forms of a function with different arguments. For
instance

 define[sum(a,b)][…
 define[sum(a,b,c)][...

both define the same named function with different arguments. You just call the one you want and the
interpreter figures out the one you want. Some languages do not allow overloading (Python, e.g.) where
the contract is to write a function with a possibly huge argument list of everything you may need and
then dispatch it internally by case. Some (such as C++, Java) are strongly typed, so these would be fine
in C++

float add(float a, float a) { }
float add(double a, double a) { }
int add(int a, double b) { }
int add(int a, int b) { }
// . . . tons more of these!

The problem with that is it can lead to an explosion of functions. Since QDL is mostly untyped (really
the only difference is scalar vs. aggregate) QDL can only differentiate functions based on the number
of arguments, but it is up to you to sort them out after that. In summary, QDL allows partial
overloading of functions.

Overloading System Functions

You may overload system functions with arguments that are not in use. For instance if you wanted a
version of the size function that worked with two argument you could write

 size(x,y)->size(x)*size(y)
 size([;5],[;7])
35

Similarly you can override with arguments that are normally not allowed. Note that attempting to
override base functions will normally throw an error unless you explicitly set the workspace variable
(also available as a configuration option) overwrite_base_functions is set on. To override a built in
function requires then that you reference it with its module:

 size(x)→1+stem#size(x)
 size([;5])
6

However while this lets you completely rewrite QDL from the ground up, it will also adversely impact
speed since built in functions have very fast access and the system must search each and every call to a
function in the user defined space first. This is normally about a 20% speed decrease.

Examples
Here is a QDL program to find the Armstrong numbers in the range of 100 – 1000. A number, xyz is an
Armstrong number iff xyz = x3 + y3 + z3. This is written to contrast a procedural style (possible in QDL)
with a more native example that follows.

define[
 armstrong(m)
][
 === Armstrong number: A 3 digit number that is equal to the sum of its cubed digits.
 === This computes them for 100 < n < 1000.
 === So for example 407 is an Armstrong number since 407 = 4^3 + 0^3 + 7^3
 if[m < 100]
 then[say('sorry, m must be 100 or larger'); return();];

 if[1000 < m]
 then[say('sorry, m must be less than 1000'); return();];

 sum := 0;
 while[for_next(j, m)]
 do[
 n := j;
 while[0 < n]
 do[
 b := mod(n, 10);
 sum := sum + b^3;
 n := n%10; // integer division means n goes to zero
]; //end inner while
 if[sum == j]
 then[return(sum);];
 sum := 0;
]; // end outer while
 return(false);
]; // end define

This requires nested loops, the outer to go over the integers to test, and an inner loop to take each
number and test the place values.

Doing it the QDL way.

There are many ways to do it in QDL. Here is one that picks out all of the Armstrong numbers based on
a test. This punches out each place value, cubes them, adds them then checks it is equal to the original
number. Then you use this to pick out the ones < 1000.

 armstrong(a)->a == (a%100)^3 + (a%10-a%100*10)^3 + (a-a%10*10)^3;
 ~pick(@armstrong, [;1000]); // lead ~ turns result into a nice list
[0,1,153,370,371,407]

The QDL is a lot simpler, there are no (explicit) control structures and over all it is a bit more intuitive
in the sense that if you handed it to someone with little explanation, there is a good chance they could
figure out what it does, knowing what an Armstrong number is to start with. You read line 2 as “pick
armstrong less than 1000”. Note that it returns an aggregate where as the standard procedural method
returns a single value and you must iterate to find all you want.

Lambdas: The short form for functions
You may define functions quite tersely, but be advised that such things as function documentation etc.
are not allowed. (Geeky stuff, this is a nod to Church’s λ calculus). The syntax is either

signature -> single expression;

In which case, the expressions result will be returned. Two examples are

 f(x,y,z) -> x+y+z;
 f(3,2,1)
6
 sum(n)->(n!=0)?sum(n-1)+n : 0; // recursive function
 sum(7)
28

Or, to have multiple statements, put them inside a block:

signature -> block[statement 1; statement 2;…];

Note that there will be no automatic return of a result, since these allow for very complex definitions
(such as conditionals) and hence it is impossible to be able to predict the logic flow and right result.

 f(x,y,z) -> block[q:=x; q:=q+y ; q:= q+z ; return(q);];
 f(3,2,1)
6

Example of a quick functions that prints 1 if the argument is positive, 0 otherwise (just to show how to
stick a conditional in):

 q(x) -> 0<x?1:0;
 q(0)
0
 q(2)
1

There are several built in functions in QDL and you can see them by issuing

)funcs system

in the workspace. Most of them have longish names for a reason. Partly it is to be descriptive, but
mostly it is because these are to be the palette from which you draw your own functions. Since it is
easy to create functions in QDL with lambdas, the easy words are left for you.

Variable visibility in lambdas and defined functions.
One major difference between lambdas and the full function definition with the define statement is
visibility of the ambient environment: In lambdas, the ambient environment is still available where in
defined functions it is not. So

 a := 4;
 f(x)->a*x;
 f(3)

12
 define[g(x)][return(a*x);]
 g(3);
unknown symbol 'a'

You may however get reduced visibility with a block statement and a lambda. This means anything
defined in the block stays there, but it still inherits the ambient state:

 f(x)->block[y:=x^2;return(a*y);]
 f(2)
16
 y
unknown symbol 'y' at (1, 0)

Lambdas as arguments

If your function requires a reference, you can pass along a lambda in the call. For instance, to call
reduce with the function x + y, on arg.

reduce((x,y)→x+y, arg.)

As function arguments, lambdas do not need a name.. You may certainly use one with the caveat that it
will supercede any in the workspace inside the function. So for instance

 g(x,y)→ x-y;
 reduce(g(x,y)->x+y, n(10))
45
 g(3,4)
-1

So passing along a function named g does has that function and only that function used during the
course of evaluation.

Summary

define[f(args)][…] ⇔ f(args) →local[…] have the exact same visibility.

f(args)→expression allows a single expression and returns its value

f(args)→block[expressions] allows a multiple expressions with no automatic return value. Note that
this is how you make a multi-line body for a lambda functions.

Lambdas inside other functions.

You can nest function definitions inside function definitions these, so

 h(x) -> [f(x)->x^2; return(f(x));];

is fine.

Nesting
You may define functions within other functions, but they are only visible within the enclosing
function. See visibility and lifetime below. For instance

define[
 f(x)
][
 s(x)->x^2;
 return(s(x));
];

In this case, the function s(x) is defined inside the body of the function, f(x). Note that in this case x
refers to dummy variables in the definition of f and s, and refers to the actual value that was passed
only in the return statement, where it is evaluated.

Function visibility and lifetime
Functions are defined within the current block and you may define them pretty much anywhere, e.g.

if[
 x<2
][
 g(x)->x^2;
 //.. lots of stuff
]else[
 g(x)->x^3+1;
 //.. lots of other stuff
];

Within the then and else blocks, g exists as defined. Issuing a call to it outside of the block would
cause an undefined function error.

One use is having conditionals define the function. Set the function to something trivial (much like
setting a variable to null first:

g(x)-> null;
if[
 x < 2
][//… etc.

Then subsequent calls to g would use whatever the definition turned out to be. It is true that you could
also just have a conditional inside the function to select the expression, but a common pattern is the so-
called factory pattern in which:

g(x)->null;
define[
 G_Factory(a,b,...)
][
 if[
 // condition
][
 g(x)-> . . .
];

 // lots of other logic machinery to determine various avatars of g
];

G_Factory(x,y, ...);

In this case, a very complex bit of logic determines what g is and sets it. You go back to the factory
and use it every time you need to determine g. This keeps the use of g separate from implementation
and runtime considerations.

Function references

Terminology. Algebraic operations are merely examples of functions that take one argument (monads)
or two arguments (dyads). Functions do things with data (like numbers, strings, stems etc.). On the
other hand, there are operators which do things to functions as well. References are the mechanism by
which functions are passed to operators.

You may also pass along references to functions in other functions. A reference to a function is of the
form

@name or @name()

where name is the name of the function and the parentheses are optional. There are no arguments. In a
similar vein, a reference to an algebraic operation is of the form

@op

E.g. @+ would be addition, @* would be multiplication.

This means that you can basically pass along the function as an argument to be applied. This works for
most operations (such as + - * etc.)

 r(x)->x^2 + 1;
 f(@h, x) -> h(x)

The first function is defined. The second one (and this is a really simple example to show how this
works) just applies the function to the argument. Note that in the definition, h is just a place holder. It
will be replaced by the first argument. To invoke it,

 f(@r, 2)
5

So in this case, f takes r and applies it to 2 . This also works with operators too

 op(@h(), x, y) -> h(x,y)
 op(@*, 2, 3)
6

This passes along the operator * and applies it as a dyad (a dyad is a function with two arguments – all
operators are simply dyadic functions) to 2 and 3. Similarly, a monad takes a single arguments (e.g.

logical not or !). Note that operators always are realized as monadic or dyadic operators, depending on
the number of arguments, since otherwise you would need some different notation for functions vs
operators, which would get very cumbersome fast. And example of an operator that is both monaidc
and dyadic is -, the minus operator. It can be monadic if it means the negative of a number, like -4 or it
can be dyadic and represent subtraction, e.g., 5 or -3.

An alternate for the monadic signs are the raised minus sign (unicode 00af, ¯) or raised plus sign ⁺
(uncode 207a). This does have the advantage that it is never ambiguous, e.g. - - - b is unclear but -- ¯b
or ¯- -b never are.

A very useful built in function that uses function references is reduce (and the related function, expand
).

Example: Getting the even and odd parts of a function.

A function, g, even if and only if g(x) == g(-x) and odd if g(x) == -g(-x). The classic example of an
even function is x^2 and of an odd function is x^3, and yes the name refers to the fact they act like even
and odd powers. Generally functions are neither even nor odd, but can always be decomposed into even
and odd parts (since this has a notation with fancy o and e in Math., we’ll use that):

o(g) = (g(x) - g(-x))/2

e(g) = (g(x) + g(-x))/2

A common thing to do in Math is to grab the even and odd parts of g and work with those. How to do
this in QDL is extremely easy with operators:

 odd(@g,x)->(g(x) - g(-x))/2;
 even(@g,x)->(g(x) + g(-x))/2;
 h(x)-> x^2 + x^3;
 h(2)
12
 odd(@h, 2);
8
 even(@h, 2)
4

Related functions

return

Description

Return a value or none. Note that this really only makes sense within a script or function. Issuing it in,
e.g. the workspace will not have the intended effect you want since you are asking the system to hand
off the value to another process. Only use this as indicated.

Usage
return([value]);

Arguments

One (optional). The value to be returned. No value means so simply exit at that point. Note that if a
function normally ends and does not return a value, you do not need a return();

Output

The value to be returned.

Examples

Here is a cheerful little program that ignores everything and just returns “hello world”.

define[
 hello_world(x)
]body[
 return('hello world!');
];

 say(hello_world(42));
hello world!

Other Topics

Assertions
Many times you want to assert that a certain condition is met or that processing should (unrecoverably)
end. This is the function of the assert construct. The form for it is very simple (Note that it is not an
expression, but a regular control structure, so it is best to have it alone on a line.)

 assert[conditional][expression];

An alternate syntax uses unicode and is

⊨ conditional : expression

where is unicode 22a8. Again, this really should be on a single line. If the conditional is true, nothing⊨
happens. If it is false, then the expression is evaluated and the result is converted to a string and a
specific error is raised (so you can catch these).

 assert[0 < script_args()]['you must supply at least one argument'];

This is one of the most commonly occurring ways to control program flow, so is properly speaking it is
simply a useful idiom.

Blocks
All a block does is create a local environment for its duration. This lets you create variables local to the
block without cluttering your symbol table. There are two types, standard (keyword block) which
inherits the ambient state and local which has no shared state. For instance, you may want to write an
initialization script which sets a bunch of variables in your workspace. This must be executed with
script_load to set variables, but it may need to do some work that involves variables and functions
that you do not want propagated. Or if the current environment has many specialized functions, you
may have to use a script_load since script_run would not inherit these. The solution is to stick
them in a block. You may use blocks wherever you like, nest them, etc.

Example

If we had a script ldap_init we might want to write something like this:

/* global variables */
ldap. := null;
start_time = date_ms();
block[
 cfg. := file_read(script_args(0),1); // read in file as stem
 ldap.username := ‘ou=people,’ + cfg.0 ; // or whatever
 my_useful_function()- > ...
 // more local stuff
];

At the end of this script, ldap. and start_time are in now available in the workspace, but cfg. and
my_useful_function are not. In this way, having a ton of helper variables and functions don’t clutter
up the user’s workspace.

Example.

Here is an example of using a local block.

 a := 5
 local[a:= 0;];
 1/a
0.2

A local environment allows you to use any state that you wish without having it propagate. As with a
block, a local environment has its specific uses.

Help in Functions
Functions have a very specific documentation feature. At the very top of the body, you may enter
documentation, each line is of the form

» text

or
=== text

and these will be taken when the function definition is read and kept available for consultation. You
may get a full listing of every user-defined (meaning, not built in) function the workspace knows about.
Such documentation is not available in lambdas because documentation has a specific format (so it can
be found by the help system) involving per line statements.

Generic help

Each is printed as

)help *
fib2(1): This will compute the n-th element of a Fibonacci sequence.
f(1): This is a comment

where there is the name(number of arguments) and the first line of the comment (which should be
meaningful and explain to the user what the function does.) The first is a good comment. The second is
not. Note:)help * is a “kitchen sink” option where you kind of know what you are looking for but
don’t really remember. It gives you a nice list to peruse and consider.

Specific help

If you want to read all of the documentation for a given function, invoke)help with the name of the
function and its argument count. For instance;

)help fib2 1
fib2(1):
This will compute the n-th element of a Fibonacci sequence.
A Fibonacci sequence, a_, a_1, a_2, ... is defined as
 a_n = a_n-1 + a_n-2
Acceptable inputs are any positive integer.
This function returns a stem list whose elements are the sequence.

There are many things that the)help command can do. Please see the workspace documentation for
more.

Operators or, what’s up with the funny characters?
Many of the functions in QDL (e.g. for_each) have an operator form (e.g.). The reasons for this are ∀
(1) simple readability and (2) streamlining your code once you are practiced at it. The only point is that
the general form of an operator is modelled on that of monaic and dyadic operators, like -. So the
general syntax is

operator main argument

additional argument operator main argument

A typical example is the transpose function,

transpose(arg.) arg.⬄⦰

tranpose(arg., axis) axis arg.⬄ ⦰

Rest assured that you do not need to ever write with these and can ignore them for the most part.
Others may use them (and often they really help readability). The major result of using them is
reducing the number of lines and probably the number of intermediate results that need to get stored.
This

a a≤2 f(a):0∃ ∧ ⇒

Just looks neater than

is_defined(a) && a <=2 ? f(a) : 0

Modules
Namespace control is an essential part of programming as is encapsulation. Modules in QDL
accomplish this. to wit

A namespace is a set of names that refer to a set of objects. Using a namespace ensures that all objects
have unique names with repsect to that namespace. A very common example is a file system, where
every file within a directory has a unique name.

One of the most basic ideas in programming is encapsulation that is to say, a group of statements with
their own state (so the variables and functions know about each other and their workings are
independent of the rest of the environment). There is usually some mechanism to limit or control
visibility to the outside. External code then does not have to be concerned with how inner workings of
encapsulated code.

In QDL both of these are accomplished through modules. Each module has its own namespace and
every object in the workspace is associated with a namespace. The namespace qualifier is a URN. It is
profitable to think of namepsaces as a dictionary of resources. Modules may also have the visibility of
the members controlled. One of the great evils of many scripting languages is that there is no
encapsulation – every variable is global and the net effect is extremely hard to find bugs.

Module syntax
Modules are defined as

module[urn]
 {body}[
 === module level comments.
 statements];

The statements have local scope, so inside the body of the module you do not need to qualify variables
or functions. By default elements inside the module are visible (see intrinsic variables below on how
to make them externally invisible). Modules may be nested. Modules may also reside in an external file
(often with the suffix .mdl) and may be loaded. Loading a module is little more than reading it into the

current workspace. You may either use the definition directly in the workspace, put it in a file and load
it or write a Java extension and load that.

Supported operations
The following operations may be done on modules:

• load - If the module statement(s) are in a file, this has the effect of running script_load. The
URI is registered with the workspace and you may create copies of it.

• import - Create an instance of the module using the ambient state. You may assign the module
to a variable and pass it around like any other variable.

• use - this imports the given module into the ambient scope, so no namespace qualifications are
needed.

• loaded - lists the loaded modules by their URI.

• drop - removes the loaded module

• rename - for a loaded module, changes the URI to a new URI.

The following operations interrogate a module for information

• funcs - list the functions in the module

• vars - list the variables in the module

• docs - list the module documentation (as a stem of strings).

An few examples

Here is a complete example of how to use a module.

 module['A:X'][f(x)→x;y:='foo';]; // loads it
 z := import('A:X'); // initializes it, puts it in z
 z#f(5)
5
 z#y
foo
 funcs(z)
[f([1])]
 vars(z)
[y]

What this does is show how to make a module available. The functions and variables are intended to be
human readable lists though they can be parsed.

 loaded()
[A:X]

This returns a list of the URIs that are loaded in current scope (here, the workspace.)

 ww(e,s)->e#f(s)
 ww(z,3)
3

This starts to show the power of having modules as variables – you can pass them around and resolve
them. So for instance you might have

 connect(db, parameters.)→db#connect(parameters.)
 my_sql := jload('db');
 postgres := jload('db');
 connect(my_sql, mysql_param.)
ok
 connect(postgres, pg_param.)
ok

in which multiple instances of a database module are running, each with their own state. This could
even be used for another module that is a utility for working with databases.

Modules may be nested, so you may have modules within modules:

 module['A:Y']
 [module['A:X']
 [f(x)→x;
 y:='foo';
];
 z:=import('A:X');
];
 y := import('A:Y');
 y#z#f(3)
3
 loaded()
[A:Y]

Here z is a module in y. The last loaded command is to show that the internal z module local to y and
the workspace is therefore unaware of it.

One final note on scope, when you import a module, it is created with exactly the state of the current
workspace.

 w(z)->z^2
 module['A:Y'][f(x)->w(2*x);]
 import('A:Y') =: h
 h#f(3)
36

Things to do with modules

• encapsulate sets of functions to extend the workspace or QDL. E.g. a module that implements a
set of specific Math functions. Typically you would want to dump these into the current scope
with the use command.

• encapsulate specific functionality, e.g., a module to do database processing. You may import
then various modules to talk to various databases.

• encapsulate specific utilities.

Import, use
There are two ways to get access to the module.

import will create a new instance and hand it back. You must assign it to a variable to use it.

use create a new instance and dump the contents into the current scope. You do not need to qualify the
functions or variables and they may be treated like any other QDL object.

Example

Let us say that you had loaded the standard mathx module that comes with QDL. You could then either
import it with its own namespace

 mathx := import('qdl:/ext/math')
 mathx#cosh(3)
10.0676619957778

Alternately, you could simply use it and make it an extension to the current workspace
 use('qdl:/ext/math')
 cosh(3)
10.0676619957778

Another use is inside of an module, where you can make it local, hence not need to use namespace
qualification:

 module['my:/ext/math']
 [load('/path/to/modules/mathx.qdl');
 use('qdl:/ext/math');
 versinh(x)→ 2*sinh(x/2)^2; // hyperbolic versine
];
 h := import('my:/ext/math');
 h#versinh(1)
0.543080634815244

Logging and debugging
There are two additional ways to keep track of what QDL is doing. Logging consists of having a
running log or file that has informational messages in it like

INFO: qdl(Fri Oct 23 10:39:53 CDT 2020): VFS MySQL mount: vfs#/mysql

A log then is a running accounting of how the system is running and doing things. You may write to the
log. There is also a debugging facility included. This writes (to system error, not the console, though

your output may end up there depending on how you have things set up). Debugging statements are
normally put into your code and may be turned on and off as needed.

Think of logging as being part of the normal operations of more complex programs and debugging is
for hard to track down issues. You do not want debugging information to end up in the log. Typically
logs accumulate and are only looked at if there is an issue. Debugging statements are left in place and
only turned on if there is some issue (such as log messages that something is not right, or other
complaints).

These are primitive functions in the sense that you would normally do something like

trace(x, user)→debugger(1,’my_script.qdl at ‘ + date_iso() + ‘(‘ + user + ‘):’ + x);
warn(x, user)→debugger(3,…);

and set up customized logging/debugging method with things like the script name, time stamps or
whatever. In this case, information about the script and current user are printed.

The dividing line between what should make it in a log and debug is arbitrary. Both work the same.
Which is to say there are levels of debugging/logging:

Name Value Description

OFF 10 Disable logging/debugging. Nothing is printed. Default for debug

SEVERE 5 an issue that prevents processing of anything. Generally issued right before
raising an error.

ERROR 4 errors - the system cannot resolve the issue, but processing continues

WARN 3 warnings - things that are serious but don't require action

INFO 2 informational

TRACE 1 Print everything at all levels

Each level is more restrictive than the last. So if you set

 debugger(4);
3
// previous debug level was 3 so now only errors or above would get outputted.

Then debug commands at a lower level will not print. This lets you ramp the amount of output up and
down as needed. Here is an example.

debugger(2); //set only warning on for debugger statements
if[!is_defined(user.id)][
 log_entry(1, 'Processing as anonymous user');
 //.. do anonymous user stuff
 debugger(1, 'checking anonymous permissions.');
]else[
 log_entry(1, 'user ' + user.id + ' found.');
 // do known user stuff. Say we can’t find this user, log it:
 log_entry(3, 'user not found in database! Done.');
];

So as a point, in this example, it is entirely possible (and normal) that the user is not in the database and
while the system can’t do anything about it (and logs the fact), normal processing continues in this
case.

You may reset the log and debug levels on the fly or specify them in the configuration file. The
advantage to the latter is that for very complex systems, there is higher level control. A common use
case is to set it in the configuration and never touch it.

Final note that if you have not configured debugging or logging then these commands do nothing.
Turning debugging on in a session is a simple as issuing a command like

debugger(1)

(or any of the non-negative levels). Logs, however, involve writing to the system and are configured in
the configuration file. Note that in server mode, most operations to change logging are forbidden since
the server should control its log, not QDL.

Debugging configuration

The debugger can be configured and this is done by passing in a stem with various values.

Name Default Description
title QDLWorkspace This is the name associated with the entry.

ts_on true Whether or not to display timestamps in the entry. Generally you do want
these on

level 10 The debugging level. The default is that debugging is off. You may use
numbers of monikers, e.g. 'info', 'warn', etc.

delimiter ' | ' The delimiter between fields in the entry. This should enhance readability
host -- If you want to display a host (really any string, since no checking is done)

you may set it here. This is useful when debugging output from several
different machines.

Note again that the debugger is quite configurable on the fly, but the logger is much more limited
because it is configured in the configuration file.

Example. Getting the current debugger settings
 debugger()
{
 level : 10,
 delimiter : | ,
 ts_on : true,
 title : QDLWorkspace
 host :
}

Example. Setting some values
 debugger({'title':'my entry','level':'info'})
{title:QDLWorkspace, level:off}

The response is the previous values.

Example. Making an entry
 debugger('info', 'test message')
true
2023-04-25T13:11:43.979Z | my entry | info: test message

The output of the debugger is the true which means that the debugger command executed successfully.
Since this is the console, standard out gets dumped here and the next line is what the actual entry it. It
is of the form

timestamp | title | level: message

Example. More realistic

Let us say you had a large complex set of scripts and needed to have very specific messages. The Right
Way to do this is to define your own set of debug commands like

format_error(script, host, message)→ …; // format the message
trace(script, message)→debugger(1, format_error(script, ‘localhost’, message));
info(script, message)→debugger(2, format_error(script, ‘localhost’, message));
warn(script, message)→debugger(3, format_error(script, ‘localhost’, message));

etc. and use these in your code.

Capturing the debugging.

Normally this is done at invocation of a script like (assuming bash$ is the shell prompt) which captures
it in a file as the program runs

bash$./my-script.qdl arg0 arg1 2> dbg.txt

This lets you run your program and test it at the command line like normal without having all the debug
commands fall out. You can then look at the file at the end of you session.

Related functions

debugger, logger

Description

Set the debugging level or issue debugging messages.

Usage
debugger()
debugger(cfg.)

debugger(level)
debugger(level , message)

logger()
logger(cfg.)
logger(level)
logger(level, message)

Arguments

(no arguments) - Inquire about current level

cfg. - a stem of configuration values (see previous section).

level - (only) set the current level for all subsequent operations. Use either integer or moniker

level, message = output the message at the given level

message - (only) output the message at the INFO (default) level.

Output

If there is no argument, the result is current configuration.

If the argument is a new level, the result is the previous level

Otherwise, a true or false is returned if the operation succeeded.

Examples

Note that you must set the highest level you want first – this sets the global logging/debug level. The
way this operates is that you set the debugging/logging level to the maximum you want, then tag each
message with the appropriate level. Logging levels are in the constants().sys_log stem. So for
instance if you set the debug level to 3, then

debugger(2, ‘foo’)

would display nothing, since 2 < 3. Debugging is printed to standard error and ends up on the console,
(GUI, ASCII or ANSI mode) while log entries are written to the log file (current one is
info().boot.log_file.

See above for an example. Logging and debugging is not hard and is very, very useful. In particular, in
cases where QDL is used for scripting on a server, it may be the only way to get feedback in real time
about how processing is happening inside the QDL runtime.

Built-in function reference
There are several built in functions in various categories. All of these can take simple or compound
variables. Functions have optional arguments denoted with curly braces, {}, so

my_func(arg.{, a | a.})

Means that my_func requires the first argument, a stem, but that the second argument is optional and is
either a stem or a scalar, so all of these are valid invocations:

my_func(my_arg.);
my_func(my_arg., my_scalar);
my_func(my_arg., my_other_stem.);

There may be multiple optional arguments

String functions

contains

Description

To find if a string contains another string

Usage
contains(source, snippets{, case_sensitive})

Arguments

source – a string or stem of strings that is the target of the search.

snippets – a string or stem of strings that are what are being search for

case_sensitive – (optional) if this is true (default) then the check is done respecting case. If it is
false then the matching is done after converting the arguments to lower case. (Note that the original
values are never altered.)

Output

A scalar or stem (if the arguments were stems) if the snippet(s) was (were) found. Note that

• source a scalar, snippet a scalar → result is a simple boolean

• source a scalar, snippet a stem → result is a stem with identical keys to the snippet and with
boolean entries

• source a stem, snippet a stem, → result is a stem with identical keys to the source and boolean
entries.

• Both stems, the result is conformable to the left argument and the right. In other words, to be in
the result, only entries with matching keys are tested.

Examples

Example 1.

 a := 'What light through yon window breaks?';
 contains(a , 'Juliette');

returns false, since there is no string 'Juliette' in the first string.

Example 2.

 source := 'the rain in Spain';
 snippet.article := 'the';
 snippet.1 := 'in';
 snippet.2 := 'Portugal';
 output. := contains(source, snippet.);

 output.article == true;
 output.1 == true;
 output.2 == false;

Example 3.

 source.foo := 'bar';
 source.fnord := 'baz';
 source.woof := 'arf';

 snippet.foo := 'ar';
 snippet.fnord := 'y';

 output. := contains(source., snippet.);

 output.foo == true;
 output.fnord == false;

In this case, only the corresponding keys are checked if both arguments are stem variables.

detokenize

Description

Converts list of tokens into a string using the delimiter between entries. Note that each element of the
list will be converted to a string. See also tokenize.

Usage
detokenize(arg, delimiter{,options})

Arguments

arg - stem of tokens to detokenize

delimiter - the delimiter to put between tokens

options - sum of 0 or 1 for append or prepend, 2 for omit dangling delimiter

So options = 0 means append, have a trailing delimiter

 options = 1 means prepend, delimiter

 options = 2 means append, omit trailing delimiter

 options = 3 means prepend, omit first delimiter

Output

The detokenized string.

Example
 detokenize([;4],'|')
0|1|2|3|

Note the trailing | added at the end.

 detokenize([;4], '|', 0)
0|1|2|3|
 detokenize([;4], '|', 1)
|0|1|2|3
 detokenize([;4]], '|',2)
0|1|2|3
 detokenize([;4], '|', 3)
0|1|2|3

omits the trailing |. To make a blank delimited list:

 caps.
[
 foo,
 compute.create:/,
 storage.read:/store
]
 detokenize(caps., ' ')
foo compute.create:/ storage.read:/store

differ_at

Description

Find first index where two strings differ. If the strings are equal then a value of -1 is returned. If one
string is a substring of another, then the index is the length (i.e. this is the index in the longer string).
You may also apply this to stems of strings.

Usage
differ_at(s0, s1)

Arguments

s0, s1 can be either strings or stems of strings.

Output

The first index where the strings fail to match or -1 if they are identical.

Example
 differ_at('abcde', 'ab'); // first index they are different is 2 in 1st arg
2
 differ_at('abcd','abcd'); // -1 means they are equal
-1
 differ_at(['abcd','efgp'],['abq','efghij'])
[2,3]
 differ_at(['abcde','abed'], 'abcq')
[3,2]

from_uri

Description

Take the output from the to_uri call and turn it into a single valid URI.

Usage

from_uri(uri.)

Arguments

A stem with the correct components for a uri.

Output

A string that is the uri.

Examples

 u := 'https://www.google.com/search?
channel=fs&client=ubuntu&q=URI+specification#my_fragment';
 uri. := to_uri(u);
 u == from_uri(uri.)
true

head

Description

Find the starting part of a string up to a given marker

Usage
head(target, stopChars{, is_regex})

Arguments

target - a string or stem of strings

stopChars - a string or stem of string of places to stop, or a regex that determines that.

is_regex - (optional) if true then all matching is done with the regular expression. Default is false.

Output

The part of target up to the stop character, i.e., the head of each string. If the stopChar is not found,
the empty string is returned.

Example

Here is taking the head of each element in a list:

 head(['bob@foo', 'todd@foo', ‘ralf!baz’], '@')
[bob,todd,]

This returns everything in each string up to the @. Since there is no @ in the last string, the enpty
string is returned for the last element. If you specify that the expression is a regex, then the effect is to
split at the regex and return everything up to it. Note that this means that non-matches are returned as
empty strings too:

 a.bob := 'bob@foo.bar'
 a.todd := 'todd@fnord.baz'
 a.x := 'TOM@Foo.bzz'
 head(a., '@f', true)
{
 bob:bob,
 x:,
 todd:todd

mailto:'todd@foo

}

index_of

Description

This finds the position of the target in the source. If the target is not in the source, then the result is -1.

Usage
index_of(source, snippet{,caseSensitive})

Arguments

source – a scalar or stem variable.

snippet – a scalar or stem variable.

case_sensitive – (Optional) a boolean that if true will check for case and if false will check against
the arguments as all lower case.

Output

if both are strings, the result is the first index of where the snippet starts in the source. If one is a stem
and the other a scalar, the result is conformable to the stem and the operation is applied to each element
of the stem. If both are stems, then only corresponding keys are checked.

Examples
 sourceStem.rule := 'One Ring to rule them all';
 sourceStem.find := 'One Ring to find them';
 sourceStem.bring := 'One Ring to bring them all;
 sourceStem.bind := 'and in the darkness bind them';

 targetStem.all := 'all';
 targetStem.One := 'One';
 targetStem.bind := 'darkness';
 targetStem.7 := 'seven';
 index_of(sourceStem., targetStem.);
{bind:11}

i.e., it returns a stem variable, which has one entry, the common key and the index, so darkness is
found starting at index 11 in sourceStem.

insert

Description

Insert a given string at a given position of another string

Usage
insert(source, snippet, index)

Arguments

source – the string to be updated

snippet – the string to insert

index – the position in the source string to insert the snippet

Output

The updated string.

Examples
 insert('abcd', 'foo', 2)
abfoocd

This also works for stem variables

replace

Description

Replace every occurrence of a string by another

Usage
replace(source, old, new{, is_regex})

Arguments

source – the original string or stem of strings

old – the current string

new – the new string.

is_regex - (optional) treat the second argument as a regular expression. If omitted, the default is
false.

There is an statement about conformability. In this case if 2 or three of the arguments are stems, then
only matching keys get replaced – the same key must be in all arguments or this is skipped. If exactly
one of the arguments is a stem, then the replacement is made one each element with same arguments –
in effect they are turned in to stem variables with constant entries. If all three are scalars it is just a
standard replacement.

Output

The updated string

Example on a stem

And example with two stem variables and a simple string.

 sourceStem.rule := 'One Ring to rule them all';
 sourceStem.find := 'One Ring to find them';
 sourceStem.bring := 'One Ring to bring them all;
 sourceStem.bind := 'and in the darkness bind them';

 old.all := 'all';
 old.One := 'One';
 old.bind := 'darkness';
 old.7 := 'seven';
 newValue := 'two';
 replace(sourceStem., old., newValue);
{bind:and in the two bind them}

The resulting output is a stem (because an input is) with the common index of bind

Why is this? Because the only key that the two stems have in common is 'bind' and that is applied to
replace 'darkness' with the new value of 'two'.

An example using regular expressions.

In this example, all the spaces in a string are replaced with periods.

 replace('a b c d e fgh', '\\s+', '.', true)
a.b.c.d.e.fgh

substring

Description

Return the substring of an argument beginning at the nth position.

Usage
substring(arg, n{,length} {,padding})

Arguments
arg – the string or stem of strings to be acted up

n - the start position in each string

length (optional) – the number of characters to return. Note that if this is omitted, the rest of the string
is returned. If it is longer than the length of the string, only the rest of the string is returned unless the
pad argument is given.

padding – (optional) a string that is used cyclically as the source for padding.

Output

The substring. Notice that this behaves somewhat differently than in some other languages in that it
may be used to make results longer than the original argument.

Examples

A basic example. Remember that the first index of a string is 0, so n = 2 means the substring starts on
the third character.

 a := 'abcd';
 say(substring(a,2));
cd

To use the padding feature

 say(substring(a,3,10,'.'));
d.........

And do note that the padding need not just be a character, but will be repeated as needed:

 say(substring(a,1,20,'<>'));
bcd<><><><><><><><><

Finally, a stem example. Note that the padding option makes all results the same length:

 b.0 := 'once upon';
 b.1 := 'a midnight';
 b.2 := 'dreary';
 d. := substring(b., 0, 15,'.');
 while[for_next(j,3)]do[say(d.j);];
once upon.......
a midnight......
dreary..........

Or you could get fancy do do something like make a table of contents:

 d. := d. + ' p. ' + n(3)
 while[for_next(j,3)]do[say(d.j);];
once upon....... p. 0
a midnight...... p. 1
dreary.......... p. 2

tail

Description

Return the right hand side of a string given a delimiter to start at.

Usage
tail(target, delimiter (, is_regex))

Arguments

target - the input (string or stem of strings) to be acted on

delimiter - the marker to be found. The last such marker is used

is_regex- if true then all matching uses delimiter as a regular expression. false is the default.

Output

The tail of of the string(s) or the empty string if there is no match. The delimiter is not returned.

Examples

 tail('qwe@asd@zxc', '@'); // only last occurrence is returned.
zxc

 tail('qweaAzxc', '[aA]+', true)
zxc

The second example uses a regex to do a case insensitive match on double a.

to_lower, to_upper

Description

This will convert the case of a string to all upper or lower case respectively.

Usage
to_lower(arg), to_upper(arg)

Arguments

arg – either a string or a stem variable of strings. Non-strings are ignored.

Output

A conformable argument of strings.

Examples
 a := 'mairzy doats';
 b := to_upper(a);
 say(b);
MAIRZY DOATS

to_uri

Description

Parse a string into a stem whose entries are the (RFC 3986 compliant) components

Usage
to_uri(string)

Arguments

string - any string. If the string is not a valid URI, this will fail.

Output

A stem variable of the components, each of which is a string (except the port, which is an integer.) Note
that no supplied port sets the value to -1;

Examples
 u := 'https://www.google.com/search?
channel=fs&client=ubuntu&q=URI+specification#my_fragment'
 to_uri(u)
{
 path:/search,
 fragment:my_fragment,
 scheme_specific_part://www.google.com/search?channel=fs&client=ubuntu&q=URI+specification,
 scheme:https,
 port:-1,
 authority:www.google.com,
 query:channel=fs&client=ubuntu&q=URI+specification,
 host:www.google.com
}

So you can see what the host is, grab the fragment, look at the query.

 tokenize(to_uri(u).query, '&')
[channel=fs,client=ubuntu,q=URI+specification]

splits the query into its elements quite nicely.

tokenize

Description

This will take a string and and delimiter then split the string using the delimiter.

Usage
tokenize(arg, delimiter{,useRegex})

Arguments

arg – either a string or stem of strings

delimiter - either a delimiter string or a regular expression (last argument is true.)

useRegex - (optional) second argument is a regular expression. Default is false.

Output

If arg is a string, then a list of tokens. If arg is a stem, then a stem of stems. Remember that the keys
are preserved if the argument is a stem and a simple list (keys are 0, 1,…) if a string.

Examples

A simple example

 say(tokenize('ab,de,ef,',','));
[ab,de,ef]

An example tokenizing a stem variable.

 q.foo := 'asd fgh';
 q.bar := 'qwe rty';
 say(tokenize(q., ' '));
{bar:[qwe,rty], foo:[asd,fgh]}

Tokenizer only works on strings. Here is the result of attempting to tokenize an integer.

 say(tokenize(123145, '1'));
123145

In this case, the argument is returned unchanged.

Example with a regular expression

 a := 'a d, m, i.n'
 r := '\\s+|,\\s*|\\.\\s*'
 tokenize(a,r,true)
[a,d,m,i,n]

Don’t forget that you can do regular expression matching with the =~ operator.

trim

Description

Trim trailing space from both ends of a string. One point to note is that since stem variables can contain
stem variable, this only operates at the top-level and if you wish to trim included stems you must do so
directly. This prevents “predictable but unwanted behavior.”

Usage
trim(arg)

Arguments

arg is either a string or a stem of strings. This function has no effect on non-strings.

Output

A result conformable to its argument.

Examples

An example

 a := ' blanks ';
'blanks' == trim(a);

Another example, using a mixed stem variable.

 my_stem.0 := ' 'foo';
 my_stem.1 := -42;
 my_stem. := trim(my_stem);
 my_stem.0 == 'foo';
 my_stem.1 == -42; // unchanged.

Math functions

abs

Description

Find the absolute value of a number

Usage
abs(arg)

Arguments

arg – a number or a stem filled with numbers.

Output

If a single number, the absolute value of that number. If a stem of numbers, the absolute value of all of
them.

Examples
 say(abs(-123));

123

date_ms, date_iso

Description

Compute and convert dates between milliseconds and the ISO 8601 standard format.

Usage
date_ms([arg])
date_iso([arg])

Arguments

either none, an argument or stem of arguments.

None:

date_ms() – returns the current time in milliseconds

date_iso() – returns the current time in ISO 8601 format.

A single argument

date_ms(arg) -- if arg is in ms, return it, otherwise convert it to ISO format

date_iso(arg) – if arg is ISO format, convert it to ms. Otherwise return it.

Output

The date in the appropriate format.

Examples
 say(date_iso());
2020-01-18T22:10:38.250Z

 say(date_ms('2020-01-18T22:10:38.250Z'));
1579385438250

 say(date_ms(1579385438250));
1579385438250

decode

Description

Decode an encoded string. The result will be a simple string, so if the original is binary, you will see
gibberish.

Usage
decode(arg{,type})

Arguments

arg – may be a string or a stem of strings. Each string will be decoded.

type - optional integer for the type of encoding or decoding. Default is 64 for base 64.

type name notes
 0 v Variable encode/decode that is QDL safe. Used in boxing, some JSON
 1 url URL encode/decode
 16 hex RFC 4648, character set is a-zA-Z0-9-_
 32 b32 RFC 4648, character set is A-Z2-7
 64 b64 RFC 4648, character set is A-Za-z0-9-/

Base 16,32 and 64 follow this specification.

Output

The decoded string.

Examples
 decode('VGhlIHF1aWNrIGJyb3duIGZveCBqdW1wcyBvdmVyIHRoZSBsYXp5IGRvZw')
The quick brown fox jumps over the lazy dog

encode

Description

Encode a string in. The returned string is URL safe.

Usage
encode(arg{,type})

Arguments

arg – a string or it may be a stem of strings.

type - integer that sets the type.

Output

If a single argument, it will be encoded. If a stem, each element will be. Non-strings are not changed.

Examples
 encode('The quick brown fox jumps over the lazy dog')
VGhlIHF1aWNrIGJyb3duIGZveCBqdW1wcyBvdmVyIHRoZSBsYXp5IGRvZw

https://datatracker.ietf.org/doc/html/rfc4648

hash

Description

Calculates the digest of the arguments and returns the value as a hex string. There are various
algorithms supported:

Supported algorithms are:

md2
md5
sha-1
sha-2 (same as sha-256)
sha-256
sha-384
sha-512

The arguments are case insensitive. The default is SHA-1, which is a fixed 20 byte result (and the
resulting output is a hexadecimal string exactly 40 characters long, regardless of the size of the input
string).

Usage
hash(arg{,algorithm})

Arguments

arg – either a single string or a stem of strings.

algorithm – which algorithm to use. Default is SHA-1

Output

A hex string that is the hash. Note that while this is a hex string, it is most emphatically not the same as
the output from the encode function.

Examples
 hash('the quick brown fox jumps over the lazy dog')
2fd4e1c67a2d28fced849ee1bb76e7391b93eb12

 hash('the quick brown fox jumps over the lazy do')
6186ce3119913cfabfe4b7952ba765b132948dd2

A couple of examples showing other hashes

 hash('the quick brown fox jumps over the lazy dog','md5')
77add1d5f41223d5582fca736a5cb335
 hash('the quick brown fox jumps over the lazy dog','sha-2')
05c6e08f1d9fdafa03147fcb8f82f124c76d2f70e3d989dc8aadb5e7d7450bec

A point to make about hashes is that even a tiny change in the input completely changes the output in

very hard to guess ways. This is what makes them so useful in e.g., security. A very common use is to
generate a password in an application and store the hash of it. This means only the user has the actual
password and when presenting it, the hash is recomputed and checked.

identity, i

Description

This simply returns its argument. It is the identity function

Usage
identity(x)
i(x)

Arguments

x - any valid QDL expression or value.

Output

x (the input)

Examples

This is extremely useful in complex expressions to organize stem indices and such. It gives a way use
only function notation. Consider

 n(3).n(4).n(5).i(0)
0

This evaluates from right to left, so i(0) returns the index of 0 and as it marches backwards, each of the
indices function – which return the integers from 0 to n-1 – does the same.

max

Description

Compute the maximum of two numbers

Usage
max(a,b)

Arguments

a - a number or stem of numbers

b - a number or stem of numbers

Output

The largest of the two arguments.

Example.
 max(3,2.5)
3
 max([-2,5],[2,4])
[2,5]

min

Description

Compute the minimum of two numbers

Usage
min(a,b)

Arguments

a - a number or stem of numbers

b - a number or stem of numbers

Output

The smallest of the two arguments.

Example.
 min(3,2.5)
2.5
 min([-2,5],[2,4])
[-2,4]

mod

Description

Compute the modulus, i.e., the remainder after long division, of two integer. Since there are currently
only integers as allowed numbers, this is needed in cases where the remainder is required.

Usage
mod(a,b)

Arguments

a and b may be either scalars or stems.

Output

Examples

To compute the simple remainder

 say(mod(27,4));
3

And sure enough 27/4 = 6 with a remainder of 3.

A stem example. Computer the remainder of a bunch of values

 a.0 := 11;
 a.1 := 20;
 say(mod(a.,4));
[3,0]

In this case, since 20 is evenly divisible by 4, the modulus (aka remainder) is 0.

Another example

Here is how to make 5 random integers in the range of -18 to 20:

 1 + mod(random(5),20)
[-5,-12,13,-2,-14]

 (The random numbers are signed so the smallest using the mod function could be -19, adding 1 gives
us -18.)

Or if you prefer all positive numbers in the range of 1 to 20:

 1 + abs(mod(random(5),20))
[16,11,16,2,20]

numeric_digits

Description

Set or query the precision for decimal numerical operations. Since decimals do not completely
represent fractions, this sets the precision (i.e., number of significant digits) used.

Note: significant figures start at the left of the number. So if we had precision of 2, then 1.20 and 1.234
would be equivalent. This is not the number digits to the right of the decimal point. Consider the
following snippet for a function h(x) defined in terms of transcendental functions:

 numeric_digits(15)
50

 h([1,2.3])
[
 -10.0676619957778,
 -1.36000254004806800000000000000
]

Both of them have 15 significant digits, but the second value has a lot more decimals. Since h(x) is
defined in terms of transcendental functions, the extra values are artifacts of approximation.

Usage
numeric_digits([new_value])

Arguments

new_value (optional) if supplied, the new value for all non-exact decimal operations.

Output

The current value.

Caveat.

Make sure your precision matches your needs. Consider this

 9223372036854775806 + 3
9223372036854780003

Which cannot be right. What gives? Since the precision is 15 and the number you gave is 18 digits
long, what happened is that the number was rounded to 15 places, then 3 was added. So the value is
right … to 15 places. If you want to see all of your digits, you need to set the precision correctly:

 numeric_digits(25)
15
 9223372036854775806 + 3
9223372036854775809

Examples

The default is 15 digits. Set the value to 50:

 numeric_digits(50)
15
 4^0.19
1.3013418554419335668321600491224611591208423214517

Set the number of digits to 100 and re-evaluate this expression

 numeric_digits(100)
15
 4^0.19

1.301341855441933566832160049122461159120842321451727432949734773315583318806133404
306182838299702735

random

Description

Generate either a single signed 64 bit random number (no argument) or a list of them.

Usage
random([n])

Arguments

number (optional) -- the number of random values you want to generate.

Output

If there is no argument, a single random 64 bit number. If there is a number, n, supplied. Then a stem
variable with indices 0,1,… n-1 containing 64 bit integers.

Examples
 say(random());
8781275837297675785

 random(5)
[-7902203766022328986,-60507163193724589,
3266880166912262770,-895740002133721315,-181676033275893516]

Here is an example of generating a list of 10 random numbers between 1 and 10:

 x. := 1+ abs(mod(random(10),11));
 say(x.);
[6,5,4,1,8,6,6,8,8,9]

random_string

Description

Generate a random string. There are random strings and there are random strings. I mean is that this
will be pseudo-random (really best a computer can do) and it will be the correct number of bytes. The
result will be base 64 encoded. See note in encode about length of strings. Note especially that the first
argument is the number of bytes you want back, not the length of the string.

Usage
random_string([n{,count}])

Arguments

n (optional) – gives the size in bytes. The default is 16 bytes = 128 bits.

count (optional) – the number of strings to return. If this is larger than 1, then you will get a stem back.

No arguments returns a single random string that is the default size.

Output

A base 64 string that faithfully (url safe) encodes the bytes.

Examples

 random_string()
Kb5NlgFgTRDWp_qW7MyUEA

Returns a random string 16 bytes = 32 characters long (the default). Note that this is 22 characters long
as 16*4/3 = 21.33333 rounds up to 22.

 random_string(32)
uf04ljhu90899QPHOMWsywxLafjsieU2nRtdeffhSvY

Returns a single string that is 32 bytes = 43 characters long.

 random_string(12,4)
[lHZhFtAYlSR-85pU,GWkbC3q5iNRFNBdT,Yp6M6Bir1JTArEuF,9CaQ2knCaiSp11-_]

Returns 4 strings that are 12 bytes = 16 characters long.

An example where the result needs to be a hex string.

In this example, we need a random, hex string that is 16 bytes long. Here's how to do it.

 encode(decode(random_string(16)),16)
efbfbdefbfbd3e7374efbfbd22efbfbdefbfbd06efbfbd10c69d2178

Transcendental functions

(Transcendental functions are those that cannot be represented by polynomials or rational expressions
of them. They therefore “transcend” Algebra which explains the name given to them in the late 18th
century, i.e., they require infinite series.)

These are the standard math functions you would expect. Rather than have separate entries, here is a
list (y refers to the output values, x to the inputs):

Name input output Description
acos(x) -1 <= x <= 1 0 <= y <= π arc cosine, result in radians
acosh(x) 1 <= x 0 <= y inverse of the hyperbolic cosine

asin(x) -1 <= x <= 1 -π/2 <= y <= π/2 arc sine, result in radians
asinh(x) any any inverse of the hyperbolic sine
atan(x) any -π/2 < y < π/2 arc tangent, result in radians
atanh(x) -1 < x < 1 any inverse of hyperbolic tangent

ceiling(x) any any the ceiling of the number.
cos(x) any -1 <= y <= 1 cosine of the angle x, x in radians.
cosh(x) any 1 <= y hyperbolic cosine
exp([x]) any 0 < y exponential function. exp(x) == e^x
floor(x) any any the floor of the number
gcd(x,y) any int int greatest common divisor
lcm(x,y) any int int least common multiple
ln(x) 0<x any natural (base e) logarithm, inverse is e^y
log(x) 0 < x any base 10 logarithm. Note inverse is 10^y

nroot(x,n) n odd, any x
n even, 0 <= x

any Compute the nth root of x.
Note that n != 0 must be an integer

pi([x]) -- π the power of pi in the current precision, π^x
π([x]) identical to pi(), π is unicode \u03c0
sin(x) any -1 <= y <= 1 the sine of the angle x, x in radians
sinh(x) any any hyperbolic sine
tan(x) any any the tangent of the angle x, x in radians
tanh(x) any any inverse of the hyperbolic tangent.

Notes:

1. Both exp() and pi() (or π()), take arguments, raising them to the indicated power. No
argument means the default argument is 1.

2. e is not used as a number because it conflicts with engineering notation, so e^x won’t work.
Use exp(x)

Note that x here is a scalar, but these will operate on stems and lists. This is a good collection that
should cover most cases and it is easy to define others you need. E.g.

sec(x)->1/cos(x);
asec(x)->acos(1/x);
logn(x, n)->ln(x)/ln(n); // convert a log to another base, n.

Example

The first few powers of 2 are

2^n(5)
[1,2,4,8,16]

If you wanted to get the logarithm, base 2, log2 (x) = ln(x)/ln(2) so to do this for our list:

 ln(2^(n(5)))/ln(2)
[
 0E-15,
 1.000000000000000,
 2.000000000000000,
 3.000000000000007,
 4.000000000000000
]

Note. While QDL supports arbitrary decimal precision, remember that computing the above values
often relies on algorithms that converge slowly to the answer and in bad cases the time rises as the
square of the digits. QDL will dutifully compute everything to 10,000 places for your 100 digit number
if you like, but you must embrace patience. Need we remind you that physical measurement stops
about 10^(-11)? For most real life problems, precision of 15, these functions converge very quickly.

List functions

expand ()⊕

Description

Apply a dyadic function pairwise to each member of a list, returning the intermediate results.

Usage
expand(@f, list.)

Arguments

@f - reference to the function you want to use.

list. - the list to be operated on

Output

A list where the (dyadic) function f is applied to each element in the list successively.

Examples

The factorial of a number, n! is the product of all the numbers 1 * 2 * . . . * n. Here’s how to compute
the factorial of 5 with all the factorials for 1, 2, 3 and 4:

 expand(@*, 1 + n(5))

[1, 2, 6, 24, 120]

It is more obvious if we show it against the arguments

[1, 2, 3, 4, 5]

 * * * *
[1, 2, 6, 24, 120]

Compare this with reduce which only returns the final result.

Another example: Getting part of a list

Let’s say we wanted to get only the elements of a list of integers less than or equal to 4. Here’s how

 a. := 1+ 2*n(5)
 mask(a., expand(@&&, a. <= 5))
[1, 3, 5]

A final example. Computing the terms of a series

If we have a series that depends on the previous term and current index, such as xn = (xn-1
2 -1)/(n2 + 1)

then this can be done as follows:

 r(x,y)->(x^2 - 1)/(y^2+1)
 expand(@r, [1;10])
[1,0,-0.1,-0.058235294117647,-0.038331101943039,-0.026987316935779,
-0.019985433694492,-0.015378470499077,-0.012192237837135]

insert_at

Description

Insert a sublist into another list, starting at a given point. All the indices in the target list are shuffled to
accommodate this.

Usage

insert_at(source.{, start_index, length}, target.{, target_index});

Arguments

source. = the stem that is the source of the copy.

start_index = the index in the source where the copy starts. Default is 0

length = how many elements to copy, default is from start_index to end

target. = the target stem of the copy

target_index = the index in the target that will receive the copy. default is 0. Note that any elements
already in these locations will be moved. If you need to overwrite elements, consider using the copy
command.

Examples
 source. := [;5] + 20
 target. := [;6] - 100
 insert_at(source., 2, 3, target., 4)

[-100,-99,-98,-97,22,23,24,-96,-95]

So this inserted 3 elements from the source starting at index 2 in the source and placed them at index 4
in the target, moving everything else.

copy

Description

Copy from one list to another.

Usage
copy(source.{, start_index, length}, target.{, target_index})

Arguments

source. = the stem that is the source of the copy.

start_index = the index in the source where the copy starts. Default is 0

length = how many elements to copy, default is from start_index to end

target. = the target stem of the copy

target_index = the index in the target that will receive the copy. default is 0. Note that any elements
already in these locations will be replaced. If you need to insert elements, consider using the insert_at
command.

N.B. That the start and target indices may be signed, so you can specify from the end of the list.

Output

The updated target stem. Note that the target is modified in this operation.

Examples
 source. := [;5]+10
 target. := [;6] - 50
 copy(source., 2, 3, target., 4)
[-50,-49,-48,-47,12,13,14]

So this took the 3 elements from source. starting at index 2 and copied them to target. starting at index
4 there.

pick

Description

A function that chooses elements of the argument based on a boolean valued function.

Usage
pick(@f, arg)

Arguments

@f - any boolean valued function that will accept the elements of the argument. Valence is 1 or 2.

arg - any argument, stem, set or scalar.

If the valence of @f is 1 then the function gets the current value of the element. If the valence is 2, then
the arguments are key, value.

Output

A result conformable to arg whose elements satisfy the pick function. If the argument is a scalar, so is
the result (and will be null if the pick function returns false). Note that this does not alter the argument.
Any boolean results for @f that are false and not included.

Example
 pick((v)-> 7<v<20,[|pi(); pi(3) ; 10|])
{2:9.33374465952533, 3:12.4298206624931, 4:15.52589666546087, 5:18.62197266842864}

In a list of 10 numbers between π and π^3 which are between 7 and 20?

 pick((k,v)-> 0<(v^2/(k^2+1))<3/2,[1;10])
{0:1, 4:5, 5:6, 6:7, 7:8, 8:9}

Sets criteria for selecting elements from the given list. (k,v) are the key (i.e. index) and value.

An example on sets. Since there is no concept of a key or index, you can only have a pick function
based on the value:

 pick((v)->'a'<v, |^random_string(10,10))
{dSBREElOapucxQ,mW_29aEYR_MyaQ,KEAIL-qoKm8a4g}

This makes some random strings and grabs only those that have a character of 'a'. Note that the result is
also a set.

reverse

Description

Reverse the order of the elements in a list

Usage
reverse(list.)

Arguments

list. - the list to be reverse

Ouput

The elements of list. in reverse order. Note that this will only return the list part of the argument. If
there are any extra stem entries, they will be omitted.

Examples
reverse([4,5,'a','b'])
[b, a, 5, 4]

sort

Description

Sort an object

Usage
sort(arg{,up})

Arguments

arg - the argument. This may be any type.

up - (optional) a boolean that if true (default) sorts in ascending order and if false, descending order

Output

A list. Note that different types are not comparable. QDL’s solution is to sort each type and return them
in groups. If your data is of one type (e.g. numbers, strings) then this exactly sorts as you expect.

Example
 sort([5,-2/3, 4/7, cos(pi()/8)])
[-0.666666666666666,0.571428571428571,0.923879532511287,5]
 sort([5,-2/3, 4/7, cos(pi()/8)], false); //descending order
[5,0.923879532511287,0.571428571428571,-0.666666666666666]

A mixed example

 sort({'a':'SPQR','b':-2/3,'c':3/7,'d':'woof'})
[SPQR,woof,-0.666666666666666,0.428571428571428]

Note that strings are grouped first, then numbers. Certain elements (like sets and embedded stems) are
simply grouped unordered at the end of the list. The point is that this sorting is for probabilities – the

vast majority of the time you have homogeneous data and want to sort that – vs. possibilities, where
you have some very odd data structure.

starts_with

Description

Find the indices of elements in the right that start elements in the left. This is the case that you have a
bunch of strings (no order and may or may not be complete or have too many elements) and need to
know which ones start which. This only works on strings at present and only for lists. Read the name as
“(left) list starts with...”

Usage
starts_with(target., caputs.)

Arguments

target. = a list of elements which are to be searched.

caput. = (Latin caput =head) are the starting of lines to be used.

Output

A list conformable to the left argument, i.e., the list is identical in length. The values are which element
in the right fulfills the requirement. If there is no match, then a value of -1 is used.

Examples
 starts_with(['a','qrs','pqr'],['a','p','s','t'])
[0,-1,1]

read this as:

left arg index 0 starts with right arg index 0
left arg index 1 starts with nothing on right
left arg index 2 starts with right arg index 1

How to get the subset of things that start? Use mask:

 mask(X., -1 < starts_with(X.,Y.))

So

 mask(['a','qrs','pqr'], -1 <starts_with(['a','qrs','pqr'],['a','p','s','t']))
{0=a, 2=pqr}

sublist

Description

Grab a sublist of a given argument with elements addressed by a range of indices (lists only). This
operates on lists only.

Usage
subset(source., start_index{, count});

Arguments

source. - the stem list to take a subset of

start_index - where to start in the source stem

count - (optional) how many elements to take. Omitting this means take the rest of the argument

Output

The altered stem. Note that this does nothing to the original stem.

Example
 // grab a subset of a set - all elements less than 3.
 subset((x)->x<3, {-2,0,4,5})
{0,-2}
 stem. := [;5] + 20;
 // Just grab the tail of this list
 subset(stem., 2)
[22,21,24]
 // grab some stuff in the middle.
 subset(stem., 1, 3)
[21,22,23]

Signed start_index is allowed

You may use a negative start_index – this simply counts from the end of the list

 subset([;15], -7, 4)
[8,9,10,11]

Using a list to get a subset.

In this case,

 2*[;5] +1
[1,3,5,7,9]
 subset(3*[;10], 2*[;5]+1)
[3,9,15,21,27]

Note that you do not need to stick with integer keys

 subset(3*[;15], {'foo':3,'bar':5,'baz':7})
{bar:15, foo:9, baz:21}

Stem functions

box

Description

Take any set of variables and turn them in to a stem, their names becoming the keys. This removes
them from the symbol table so the only access afterwards is as part of the stem. See the function unbox
for the inverse of this.

Usage
box(var0, var1, …);

Arguments

There must be at least on argument. The arguments are variables that have been defined. These will be
put in to a stem and removed from the symbol table. Arguments may be scalars or stems.

Ouput

A true if this succeeded.

Examples
 a. := -5 + i(5);
 b. := 5 + i(5);
)vars
a., b.
c. := box(a., b.);
)vars
c.

So a. and b. no longer are in the symbol table, but are in the stem:

 c.
{a=[-5,-4,-3,-2,-1], b=[5,6,7,8,9]}

common_keys

Description

Find the keys common to two stems

Usage
common_keys(stem1., stem2.)

Arguments

stem1. and stem2. are any stems.

Output

A list of keys common to both stems. The order of the stems does not matter

Examples
 common_keys(n(10), 6+n(5))
[0,1,2,3,4]

diff

Description

Compare two stems, returning a stem of the differences only between them, element by element.

Usage
diff(x., y.{,subsettingOn})

Arguments

x. - the first argument

y. the second arguments

subsettingOn - (optional) a boolean that if true means that only common keys are processed. if false,
then missing keys are treated as if they have a null value.

Output

A stem whose keys are the same in both (subsettingOn == true) or every key in either of the stems
(subsettingOn == false) In the case of reading files line by line, this gives a QDL analog to the
venerable unix command line utility diff.

Examples
 diff({'a':'p','b':'q'},{'a':'p','b':'r', 'c':'t'})
{b:[q,r]}

There is one difference between these stems. For the key b the first argument has value q and the
second has value r.

 diff({'a':'p','b':'q'},{'a':'p','b':'r', 'c':'t'}, false)
{b:[q,r], c:[null,t]}

In this case, subsetting is turned off and in addition to the first result, it tells us that for the key c the
first argument is missing this and the second has a value of t.

 diff({'a':'p','b':'r', 'c':'t'}, 'p')
{b:[r,p], c:[t,p]}

In the case of a scalar argument, this is extended to every element on the left, so the result says that
entries b and c do not have the value of 'p'

dim

Description

Return the dimension vector associated with a stem.

Usage
dim(arg)

Arguments

arg - the argument to operate on. It may be a scalar (trivial case) or a stem.

Output

If arg is a scalar, the output is the constant 0. If it is a stem, it is the number of independent axis each
with their size.

Examples

 dim(4)
0

A scalar has no dimension.

 dim(n(3,4,5))
[3,4,5]

Dimension vectors can be extremely useful to query a stem about its structure.

exclude_keys

Description

Remove a set of keys from a stem.

Usage
exclude_keys(stem1,, stem2.)

Arguments

stem1. = the target of this operation.

stem2. = a list of keys to be removed. Note that the values of this stem are what are to be removed
from the target. There is no assumption that the keys of stem2 are integers, for instance.

Output

A new stem that contains none of the keys in stem2.

Examples
 a.foo := 'q';
 a.bar := 'w';
 b.w := 42;
 b.a := 17;
 say(exclude_keys(b., a.));
{a=17}

 a.rule := 'One Ring to rule them all';
 a.find := 'One Ring to find them';
 a.bring := 'One Ring to bring them all';
 a.bind := 'and in the darkness bind them';

 list.0 := 'rule';
 list.1 := 'bring';

 exclude_keys(a., list.)
{bind:and in the darkness bind them,
 find:One Ring to find them}

for_each ()∀

Description

Apply an n-adic function, f, to each element of the outer (Cartesian) product of the arg_k.

Note that in QDL, there is subsetting involved in stem operations. For something like

 1+2*n(4) == n(7)

[false,false,false,false]

This is a very natural choice and the right one. However, if we needed to preserve the second argument,
so 7 elements, for_each is made to order.

 reduce(@||, for_each(@==, 1+2*[;4], [;7]))
[false,true,false,true,false,true,false]

This compares every element in n(4) with every element in n(7), then reduces that result. reduce
squishes along the zero-th axis, leaving the 7 element list. See below for another example of creating a
table of values this way. You can pass in any function you want to do this. e.g.

 q(x,y) -> x*y
 z. := for_each(@q, [|-1;1;10|],[0;2;0.25])

Note: This applies to the zero-th axis of each argument. If you really want to get geeky, dyadic
for_each generalizes

a. b.⊗

i.e., the tensor product of two vectors to arbitrary functions, not just multiplication. Geeky aside: The
reason that we use @ for function references is because it kinda looks a tiny bit like the tensor product
sign. Kinda. In any case, you can use the ⊗ (unicode , \u2297) in place of @ if you like, so

 reduce(, ≡ [1+2×[;4], [;7]])⊗∨ ⊗ ∀
[false,true,false,true,false,true,false]

is fine QDL.

Comment. for_each largely replaces looping in most cases. If you are writing a while[] loop, do
consider if for_each would work. Not always (or we would not have a looping construct) but it does
work a very large percentage of the time, if more efficient and makes the code vastly easier to read.

Usage
for_each(@f, arg_1, arg_2, ..., arg_n)
@f [arg_1,...arg_n]∀

Arguments

@f - the n-adic function. It will be fed all of the elements from all the stems. You may also have
lambdas.

arg_1., arg_2., … arg_n. - n values (stems or scalars) to process. every point of each of these will
be fed in succession to f to evaluate.

Note that for the notation, the argument is a list ∀ and the left hand side must be a function reference
(not a lambda).

Output

A stem consisting of the outer (Cartesian) product of each of the arguments with the function f applied
to each. Dimension is [dim(arg_1.), dim(arg_2.),. . ., dim(arg_n.)]

Examples

Simple example, making a multiplication table.

 a. := for_each(@*, 1+[;5], 1+[;6])
 a.
[
 [1,2,3,4,5,6],
 [2,4,6,8,10,12],
 [3,6,9,12,15,18],
 [4,8,12,16,20,24],
 [5,10,15,20,25,30]
]

Things to note:

• The result is the product of the stems, so here there is a 5 x 6 array that results. a.i.j is the
product of the i-th and j-th elements.

• An alternate way to do this would involve a double while loop over the elements, multiply
them then set the value of a.i.j directly. for_each should be considered any place you might
want to loop, since it is probably the more efficient way to do it and vastly easier to use than
nested loops.

Example

Fill a 5×6 array with zeros

 for_each((x,y)->0,[;5],[;6])
[
 [0,0,0,0,0,0],
 . . .
]

In this way, for_each lets you create any sized array you want with any values. A 10×10 identity
matrix:

 for_each((x,y)->x==y?1:0,[;10],[;10])
[
 [1,0,0,0,0,0,0,0,0,0],
 . . .
]

Example.

Create the grid points for a quadric (polynomial) surface over a region.

 z. := for_each((x,y)->x*y, [|-1;1;15|],[0;3;0.25])
 dim(z.)
[15,12]

This creates a table over the region of the plane for -1 <= x <= 1
and 0 <= y < 3. There are 15 total points in the x direction and the y direction is done in increments of
0.25, resulting in 12 values, so the result is a 15 x 12 array.

Example.

Turning a stem of values into a stem of string.

One common case is that you have a stem of values, a. and need to change each element to a string.
Invoking the to_string method does not give you the result:

 z. := ['abc', true, 0.23, -1]
 to_string(z.) // A single string of characters, not a list
[abc,true,0.23,-1]

 w. := for_each(@to_string, z.) // returns a list of strings.
 w.
[abc,true,0.23,-1]
 size(w.)
4

from_json

Description

Take a string that represents an object in JSON (JavaScript Object Notation) and return a stem
representation. JSON is quite popular, (as in, it is inescapable anymore) but do remember it is a
notation for objects that live in Javascript. To be blunt, it was designed to send information in REST-ful
applications but because it is easy to use, is now being used by many as a general data description
format. It was intended to tightly couple in-memory Javascript data structures on a server to be
processed by a browser, so using it generally is arguably a bad idea. And yet, here we are. If you stick
to the intended original purpose, it works great.

Note that there are some incompatibilities. First off, there is no actual standard way for JSON to
represent all data, so you have to know what the structure of a JSON object is before you get it. A URI
may be a string, or it may be represented as some arcane JSON structure. Same with dates.

Stems are more general data structures than JSON, and cannot be fully represented. For instance, JSON
objects do not have default values, not can they represent sets. If you have a stem of sets with a default
value, it may be very hard to get a resonable JSON format of it. This is a limitation of JSON.

Heading in the other direction, JSON can be represented as a QDL stem, except that QDL does not
allow quite stem keys that end in a period. This JSON object:

{".":"a"}

cannot be directly ingested as a QDL object since it would be interpreted as a trivial stem. Compare:

 from_json('{"a.":"a"}')
{a:a}

So we see that the extra “.” on the key is consumed converting it to a stem. This can be just fine in most
cases, but does prevent round-tripping. This is why there are various conversion options that use
encode.

 q := '{".":"a","..":"b","...c..":"c"}'
 j. := from_json(q,0)
 j.;
{
 $2E:a,
 $2E$2E:b,
 $2E$2E$2Ec$2E$2E:c
}
 to_json(j., 0,0)
{".":"a","..":"b","...c..":"c"}

Usage
from_json(var{, convert_type})

Arguments

var = the string or stem of strings to be converted

convert_type = (optional) if true apply encode with the given type to each key.

Output

A stem that contains the information in the original.

Note that JSON properties will be turned in to valid QDL variable names, escaping them if requested.
This permits good interoperability.

Examples

A simple example.

 from_json('{"woof":"arf","0":0,"1":1,"2":2}')
[0,1,2]~{woof:arf}

Reading a file

// here is a large, messy example
 b := read_file('/tmp/my_json.json');

// (some indenting was done manually to keep this vaguely readable)
 b
{"a":"b","s":"n","d":"m",
 "foo":{"tyu":"ftfgh","rty":"456","ghjjh":"456456",
 "woof":{"a3tyu":"ftf222gh","a3rty":"456222","a3ghjjh":"422256456"},
 "0":"qwe","1":"eee","2":"rrr"},
"0":"foo","1":"bar"}
 // make a stem
 b. := from_json(b)
 say(b., true)
[foo,bar]~{
 a:b,
 s:n,
 d:m,
 foo:[qwe,eee,rrr]~ {
 tyu:ftfgh,
 rty:456,
 woof: {
 a3tyu:ftf222gh,
 a3rty:456222,
 a3ghjjh:422256456
 },
 ghjjh:456456
 }
}
// And just to check it really is a stem
 b.foo.woof.
{a3tyu=ftf222gh, a3rty=456222, a3ghjjh=422256456}

A stem example.

Here is an example to read an encoded JWT (JSON Web Token) from the clipboard, decode it and turn
it into a stem. A JWT is of the form X.Y.Z where X, Y and Z are base 64 encoded. Z (if present) is a
binary signature, so cannot be read.

 jwt()->from_json(decode(tokenize(cb_read(), '.')\[0,1]));

Typical JWT. Copy it to the clipboard:

eyJraWQiOiJCRUZGRjU4NzZEMTAiLCJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9.
eyJ3bGNnLnZlciI6IjEuMCIsImF1ZCI6Imh0dHBzOi8vd2xjZy5jZXJuLmNoL
2p3dC92MS9hbnkiLCJzdWIiOiJqZ2F5bm9yIiwibmJmIjoxNjU2MDIwMjMxLCJz
Y29wZSI6Ii9ob21lL2plZmYifQ.
bYPQkk7VDPVF4EYM4KpPRtzdIEyaPraEc7Tg
-xr6FBXzg5gDUdEWyscAvBbGm77Pj0Hn0OJrKZ1lux8SgB_DkBo

Do note that base 64 decode ignores any embedded blanks and linefeeds, as per the spec.

 jwt()
[
 {
 kid:BEFFF5876D10,
 typ:JWT,
 alg:RS256
 },
 {
 wlcg.ver:1.0,
 aud:https://wlcg.cern.ch/jwt/v1/any,
 sub:jgaynor,
 nbf:1656020231,
 scope:/home/jeff
 }

Note that the we extract the first two fields since the last field of Z here is binary hence not valid JSON
and therefore and cannot be turned into a stem.

Escaping of JSON keys.

In this example, a simple JSON list is given and the key for this list is not a valid QDL key (ends in a
period). In this case, the name is escaped.

 a. := from_json('{"#$rt.":[0,1,2]}', 0);
 a.
 from_json('{"#$rt.":[0,1,2]}', 0)
{$23$24rt$2E: [0,1,2]}
 a.$23$24rt.2 := 5
 a.
{$23$24rt.:[0,1,5]}
 to_json(a., 0,0)
{"#$rt":[0,1,5]}

Since you can loop over all indices in a stem easily, odd names can be handled:

if[is_defined(a.encode('#$rt.',0))]then[/*do stuff*/]

has_key (,)∋ ∌

Description

Check is a list of keys is in a target stem.

Usage
has_keys(list., target.) or list.∋ target. or list.∌ target.

Arguments

target. – the target of this operation

list. – a list of keys.

Output

A boolean list with true as the value if the target contains the key and false if it does not.

Examples

Just because it is easy to do, I am going to make a stem filled with 5 random integers, then a list of 10
indices. Obviously only the first 5 indices in w. will be in var.:

 var. := random(5);
 w. := n(10);
 has_keys(w., var., w.)
[true,true,true,true,true,false,false,false,false,false]
 w. var.∋
[true,true,true,true,true,false,false,false,false,false]
 w. var. ; // does NOT have these keys∌
[false,false,false,false,false,true,true,true,true,true]

has_value (,)∈ ∉

Description

Check if an argument contains a given value or set of values. Note that this effectively is a search
function for its arguments.

Usage
has_value(left_arg, right_arg) or left_arg right_arg∈

Arguments

left_arg - A stem or scalar.

right_arg - a stem or scalar.

Output

The result is a boolean or stem of booleans. The result is always conformable to the left_arg, so if
that is a scalar, the result is a scalar. If it is a stem, the result is a stem with identical keys. If both are
scalars, this is the same as invoking equality (==). Extremely useful in conjunction with the mask
function.

Examples
 a. := n(3);
 b. := n(5) * 2;
 c.foo := 1; c.bar := 'arf';
 has_value(a., b.)
[true,false,true]
 has_value(b., a.)
[true,true,false,false,false]
 has_value(a., c.)
[false,true,false]

 has_value(c., a.)
{
 bar:false,
 foo:true
}
 has_value('arf', c.)
true

A useful construct is to pair this with the mask function to grab exactly the bits of a stem you want

 mask(a., has_value(a., 2))
{2:2}
 mask(a., a. 2); // Identical, just shorter syntax∈
{2:2}

The effect then is that a. is searched to see if it contains the value of 2. It does (at index 2) and mask
strips off everything else. You now have the right index and the right value.

include_keys

Description

Take a stem, a. and a list of indices, list. and return the values of a. that have the same indices as list.

Usage
include_keys(var., list.)

Arguments

var. – a stem

list. - a list of keys. These will be the keys of the result, var. will supply the values.

Output

A stem with the keys from the list. and the corresponding values from the var.

Examples
 a.rule := 'One Ring to rule them all';
 a.find := 'One Ring to find them';
 a.bring := 'One Ring to bring them all';
 a.bind := 'and in the darkness bind them';

 list.0 := 'rule';
 list.1 := 'bring';

 say(include_keys(a., list.));
{
 bring:One Ring to bring them all,
 rule:One Ring to rule them all}

indices

Description

Return all the indices or keys in a stem or restrict to the keys for a given axis.

Usage
indices(arg.{,axis})

Arguments

arg. - the stem whose keys will be returned

axis - (optional) the axis for the keys. If it is missing, the zero-th axis will be assumed, making this
identical in function to list_keys(arg.)

Output

A stem whose elements are the keys. If axis 0 is requested, the stem will be just a list of indices. If
other axes are requested, the stem will be stem indices. This is also a great way to get a table of
contents for a generic stem, though it is often simply too verbose for things like a rectangular array
(e.g. a matrix) where are the indices are predictable.

Examples

Remember that

a.p.q . . . r == a.[p,q, . . . r]

And the list on the right hand side is called a stem index. In this example we create a list and show
what the set of indices looks like.

 a. := [;5]~n(2,3, n(6))
 a.
[0,1,2,3,4,[0,1,2],[3,4,5]]
 indices(a., 0); // get the first axis
[0,1,2,3,4]
 indices(a., -1); // get the last axis
[[5,0],[5,1],[5,2],[6,0],[6,1],[6,2]]
 a.[6,2]
5

is_list

Description

Determine if the argument is precisely a list. That means, that it is a stem with only integer indices.

Usage

is_list(stem.)

Arguments

stem. The stem to check

Output

A boolean that tells if this is a list.

Examples
 my_stem.help := 'this is my stem'
 my_stem.~ n(5)
[0,1,2,3,4]~{
 help:this is my stem
}
 is_list(my_stem.)
false

Why is this false? Because it has a non-integer index. The function tells you if the object is a list and
only a list. Compare with

 is_list([;10])
true

join

Description

Join two stems along a given axis. This increases the number of elements on the axis.

Usage
join(x., y., axis)

Arguments

x., y. are stems and should be conformable.

axis - an integer stating which axis to use.

By axis we mean which index of the stem’s dimension. So in

a.p.q.r

a. means axis 0

a.p is axis 1

a.p.q is axis 2

See the examples below. The standard ~ operator is just a join along the default axis of 0, and operator,
~| (unicode 2241,) ≁ that will do the join along the last axis.

Output

The joined stem. Note that the dimension does not change, but the axis (which refers to the index of
the dimension) will. Easiest to look at the example below rather than describe.

Examples

Simplest is best.

 [;5]~[;5]
[0,1,2,3,4,0,1,2,3,4]

This joins the two stems along their zero-th axis and the number of elements on that axis is now 10.

A larger example

It is best to have a large example so you can see what is going on.

 q. := [[n(4), 4+n(4)],[8+n(4),12+n(4)], [16+n(5),21+n(5)]]
 w. := 100 + q.
 dim(q.)
[3,2,4]

 q.
[
 [[0,1,2,3],[4,5,6,7]],
 [[8,9,10,11],[12,13,14,15]],
 [[16,17,18,19,20],[21,22,23,24,25]]
]
 w.
[
 [[100,101,102,103],[104,105,106,107]],
 [[108,109,110,111],[112,113,114,115]],
 [[116,117,118,119,120],[121,122,123,124,125]]
]

So w. and q. have the same dimension. Invoking join without an axis means the join along the zeroth
axis. This means that the zeroth dimension will change:

 // also q.~w.
 z. := join(q.,w.)
 dim(z.)
[6,2,4]

 // * <--- You are here
 // z.i.j.k
 join(q.,w.,0)
[
 [[0,1,2,3],[4,5,6,7]],
 [[8,9,10,11],[12,13,14,15]],
 [[16,17,18,19,20],[21,22,23,24,25]],
 [[100,101,102,103],[104,105,106,107]],
 [[108,109,110,111],[112,113,114,115]],

 [[116,117,118,119,120],[121,122,123,124,125]]
]

result is list of combined lengths size(z.) == size(q.) + size(w.)

the second argument is treated as a list and just tacked on to the first.

 z. := join(q., w., 1)
 dim(z.)
[3,4,4]
 // * <--- You are here
 // z.i.j.k
[
 [[0,1,2,3],[4,5,6,7],[100,101,102,103],[104,105,106,107]],
 [[8,9,10,11],[12,13,14,15],[108,109,110,111],[112,113,114,115]],
 [[16,17,18,19,20],[21,22,23,24,25],[116,117,118,119,120],[121,122,123,124,125]]
]

z. has same shape, but z.k == q.k ~ w.k

This tacks all the first entries together

 z. := join(q.,w., 2)
 dim(z.)
[3,2,8]
 // * <--- You are here
 // z.i.j.k
[
 [[0,1,2,3,100,101,102,103],[4,5,6,7,104,105,106,107]],
 [[8,9,10,11,108,109,110,111],[12,13,14,15,112,113,114,115]],
 [[16,17,18,19,20,116,117,118,119,120],[21,22,23,24,25,121,122,123,124,125]]
]

z. now has size(z.i.k) == size(q.i.k) + size(w.i.k)

 z. := join(q.,w., 3)
rank error

A rank error happens if you exceed the actual entries of the stem.

A more concrete example

Let us say you wanted to create functions that produce pairs of values for a plotting program (such as
gnuplot). In QDL you could just create a function:

define[
 plot(@f(), x.)
][
 x. := n(size(x.),1,x.); // resize x to nx1 column vector.
 return(x.~|f(x.)); // note that x.~|f(x.) == join(x., f(x.), -1)
];

This evaluates whatever the function is on the column vector. The result is a join of the x. and f(x.)
along their last axis, so that inputs and outputs are together. This can be written very easily to a comma
delimited file (e.g.) or perhaps just dumped as a JSON string and the plotting program can then read it.
In QDL you generally describe what you need the data to do, such as here, make some values and glom
them together. See also the laminate function in the extension module.

keys

Description

Return a stem of the keys for a given stem variable.

Usage
keys(arg.{,scalars_only | var_type})

Arguments

arg. = A stem variable. Remember that the entire stem is referenced by just the head + “.”

scalars_only = (optional boolean) if true lists only the keys that are for scalars. If false, only the keys
for stems are listed. If this is omitted, all keys are returned.

var_type = (optional) The variable type as an integer. If this is specified then only indices with a
value of that type are returned.

Output

A stem of keys where every key has itself as the value.

Examples

Example. Let's say you have the following stem variable”

 sourceStem.rule :='One Ring to rule them all';
 sourceStem.find := 'One Ring to find them';
 sourceStem.bring := 'One Ring to bring them all';
 sourceStem.bind := 'and in the darkness bind them';

and you issue

 keys(sourceStem.)
{bind:bind,
 find:find,
 bring:bring,
 rule:rule}

Note that there is no canonical order to keys, so the keys to sourceStem. Can appear in any order in
the result.

This is extremely useful with e.g. the rename function. So you can get all the keys, change their values
and rename them.

Examples of filtering

Let us take the following example of a stem with various types of entries

 a. := ['a',null,['x','y'],2]~{'p':123.34, 'q': -321, 'r':false}
 keys(a.)
[0, 1, 2, 3]~{ p:p, q:q, r:r}

Returns every key. remember that the values for the variables types are in

 constants('var_type')
{
 boolean:1,
 string:3,
 null:0,
 integer:2,
 decimal:5,
 stem:4,
 undefined:-1
}

To get the filter keys for the boolean entries only

 keys(a., 1)
{r:r}

To get the null entries:

 keys(a., 0)
{1:1}

To get only the integers

 keys(a., 2)
{q:q,3:3}

To get only the stem entries (vs. scalar)

 keys(a., false)
{2:2}
 a.2 // just checking
[x,y]

How to get only the entries that are scalar valued

 keys(a., true)
{
 p:p,
 q:q,

 r:r,
 0:0,
 1:1,
 3:3
}

Again, part of the contract for this call is that there is no canonical ordering, since there cannot be for
stem keys generally.

An example to rename keys

Let us say we had the following stem with these keys (which were generated someplace else and we
imported, e.g., from JSON):

 b.OA2_foo := 'a';
 b.OA2_woof := 'b';
 b.OA2_arf := 'c';
 b.fnord := 'd';
 b.
{
 OA2_arf:c,
 OA2_foo:a,
 OA2_woof:b,
 fnord:d
}

The list_keys() command gives the following

 list_keys(b.)
[OA2_arf, fnord, OA2_foo, OA2_woof]

To rename all the keys so that any with the OA2_ prefix are changed, issue

 remap(b., list_keys(b.), list_keys(b.) - 'OA2_')
{
 arf:c,
 foo:a,
 fnord:d,
 woof:b
}

Example contrasting shuffle with rename_keys

This creates a list [2,9,16,23,30,37,44] of 7 elements. First we simple reorder them. Note that the
length of the left argument is 7 and that every index is represented:

 shuffle(2+n(7)*7, [6,4,2,5,3,1,0])
[44,30,16,37,23,9,2]

In the next example, we just rename key 0 (only index on right) to 15. The display is no longer with
square brackets because it is, properly speaking, no longer a list.

 rename_keys(2+n(7)*7, [15])
{
 1:9,
 2:16,
 3:23,
 4:30,
 5:37,
 6:44,
 15:2
}

To be exhaustive you can also use stem notation for the left side in this case, even though it is also a
list:

 rename_keys(2+n(7)*7, {0:15})
{
 1:9,
 2:16,
 3:23,
 4:30,
 5:37,
 6:44,
 15:2
}

list_keys

Description

Return a list of the keys for a given stem variable. It allows masking by value type.

Usage
list_keys(arg.{,scalars_only | var_type})

Arguments

arg. = A stem variable. Remember that the entire stem is referenced by just the head + “.”

scalars_only = (a boolean) if true lists only the keys that are for scalars. If false, only the keys for
stems are listed. If this is omitted, all keys are returned.

var_type = (optional) The variable type as an integer. If this is specified then only indices with a
value of that type are returned.

Output

A list of keys where the new keys are cardinals and the values are the keys in the original stem. See
also the keys() function. The difference is that this is list but keys() returns the set of keys. This is useful
for reshuffling indices.

Examples

Example. Let's say you have the following stem variable”

 sourceStem.rule :='One Ring to rule them all';
 sourceStem.find := 'One Ring to find them';
 sourceStem.bring := 'One Ring to bring them all';
 sourceStem.bind := 'and in the darkness bind them';

and you issue

 list_keys(sourceStem.)
[bind,find,bring,rule]

And to just list the scalar indices (note that strings are treated as scalars):

 list_keys(sourceStem., true)
[bind,find,bring,rule]

If you tried to list just the keys for the stems, you would get an empty list back:

Note that there is no canonical order to keys, so the keys to sourceStem. Can appear in any order in
the result.

Example:Masking

Let us say you issued a complex statement using mask(), like

 ww. := random(4, 8)
 ww.
[
 5652543194030156086,
 6244984374016755256,
 3047862711518522798,
 2011719346505809871
]

we need to grab the one element that has remainder 11 after division by 17 (this generates an example
where one of the ones in the middle is what we want) so we use mask():

 mask(ww., mod(ww., 17)==11)
{
 3:2011719346505809871
}

 which dutifully informs us that the 3rd element is the one we want. To actually grab this, you can use
list_keys() and stem resolution:

 k. := list_keys(mask(ww., mod(ww., 17)==11));
 ww.k.0
2011719346505809871

Another example: looping

Let us say that you got the above key set. How might you use it? In a loop:

while[
 for_keys(j, var.)
]do[
 sourceStem.var.j // … do stuff with this
];

which loops through all the values in source stem.

Another example: getting only values of a certain type.
 q. := {'a':['p','q'],'b':'r', 'c':false,'d':123.345,'e':42}
 list_keys(q., 2); // 2 is the variable type for integers
[e]

Meaning, that this is a list for the keys (there is one here) of integer-valued entries in the stem.

Note:The following are equivalent

 list_keys(q., false)
[a]
 list_keys(q., 4)
[a]

So it is possible to, e.g. loop over only the decimal elements in a stem.

mask ()⌆

Description

Take a boolean mask of a stem.

Usage
mask(target., bit_stem.)

Arguments

target – the stem variable to acted upon.

bit_mask – a stem variable with the same keys as target and boolean values. If the value is true then the
entry is kept in the result and if false it is not. Note that if there are missing keys then these will not be
returned either (so subsetting is still in effect), essentially making them equivalent to false entries.

Output

A subset of the target.

Examples
 header.transport := 'ssl';
 header.iss := 'OA4MP_agent';
 header.idp := 'http://oa4mp.org/idp/secure';
 header.login_allowed := 'true';
 // case insensitive match
 header. := mask(header., !contains(header., 'oa4mp', false));
 // This removes every entry containing 'oa4mp'
 say(size(header.);
2

n

Description

Make a list of indices. This is very useful in conjunction with looping. Note that the one simple case

n(p) == [;p]

for 0 < p an integer. n, however, allows you to make higher dimension stems or reshape them.

Usage
n(arg0{,arg1,arg2,...}{,fill.});
n(dim.{,fill.});

Arguments

arg_k (first form) are numbers. This will be the size of the resulting index set.

dim. - (second form) a list of dimensions.

fill. - (optional)stem of scalars that will be used as values cyclically. Note that even if this has a
single entry, it must be a stem.

Output

A list, i.e., a stem variable whose keys are the integers, and whose entries are either the same or the
elements of fill. re-used cyclically.

Examples

Simple examples.

 n(5)
[0,1,2,3,4]
 n(5,[2,3])
[2,3,2,3,2]
 n(2,3)
[
 [0,1,2],
 [0,1,2]
]

 n([2,3],[;6])
[
 [0,1,2],
 [3,4,5]
]

In the second example, the result is a 2 rank array aka a 2 x 3 matrix of integers. Since no fill was
specified, the default of the last argument extended holds. Here is an example of a 2x3x6 array filled
with zeros.

 n([2,3,6],[0])
[
 [
 [0,0,0,0,0,0],
 [0,0,0,0,0,0],
 [0,0,0,0,0,0]
],
 [
 [0,0,0,0,0,0],
 [0,0,0,0,0,0],
 [0,0,0,0,0,0]
]
]

Vector valued function.

 f(x) -> (x^2+1)/(x^2+2);
 f(1+n(5)/5)
[
 0.666666666666666,
 0.709302325581395,
 0.747474747474747,
 0.780701754385964,
 0.809160305343511
]

In this case, a function is defined and evaluated at 1, 1.2, 1.4, 1.6, 1.8.

How this relates to looping.

x. := n(size(myStem.));

results in

[0,1,2,...]

So a common pattern is

while[
 for_keys(j, x.)
]do[
 myStem.j := // other stuff
 // myStem.x.j is an equivalent reference.
];

Example: Looping over scalars and stems

A common issue is the you may have a stem some of whose elements are scalars and some are stems.
writing a loop seems to require that you have knowledge about every index. This is not needed with
for_keys since the keys are retrieved. This is especially useful in lists. IN this example, there is a stem,
a. some of whose entries are scalars (strings) and some are 3 element random integers. Here is how to
loop over the elements:

 while[for_keys(j,a.)]do[say(a.j);]
UiVih_S-Act_0mclp7i0CQ
[8528928954721892791, -9103201823511602727, -8452824104954706854]
XkiEEZ1g297TfZY3ItjL5w
[5095335425002685458, 380662481390939243, -2302353563657105155]
FUKe27vv56w8-lahY2InNA

print

Description

This will take the stem (or list) and format it in columns according to

various parameters which may be specified in the format. argument.

Usage

display(arg.{,format. | width})

Arguments

arg. - stem to be formatted

format. - stem of formatting parameters

width - the total width of the display

Table of values for format.

Name Default Description

width -11 The total width the output should fit in. The values may be
wrapped as needed. A value of -1 means the line length is
infinite.

keys -- list of keys that are a subset to be printed

sort true Display has keys sorted

short false Restrict the value displayed to a single line within the given
width.This is useful for large values to get a quick overview

string_output true If true, then the output is a single formatted string. If false, the
output is a stem of formatted lines.

indent 0 How much to indent the entire output from the left

Output

Output is columnar and of the form

 key0 : value0

 key1 : value1...

Where the values may span multiple lines. The short option will truncate output to fit on a single line,
with possible trailing … to show truncation.

Caveat: This is intended for displaying information in tabular format for reports, e.g. and is not a
general purpose stem formatting function. You would format individual stems with this. The major
reason is that a truly complex stem might end up being simply enormous. Making if format means
controlling space and nested stems quickly exhaust every display device. This function, however, gives
a great building block to make your own specific stem viewer.

Examples
 display({'a':'woof', 'fnord':'warf'})
 a : woof
fnord : warf

 print(pi()^[;7])
0 : 1
1 : 3.14159265358979
2 : 9.86960440108934
3 : 31.0062766802997
4 : 97.4090910340020
5 : 306.019684785280
6 : 961.389193575298

 print({'first':random_string(64), 'second':random_string(64)}, {'width':50})
 first : WIzEQR3-Og0i9c-3mh-LuQAfx2docUkTF3MOHVwXi
 v-QcASqN-YOrRAdEbpEErAfFy9rPEeruPEPK1zIW0
 F4vA
second : zLO5uMm2Vqt9vXIekmEw-_3BzSxDFz5Tbh8dPrBx2
 5I55ncS8rcvfSzYObymSB-tiAJ9gLjHCN6QRCJVdn
 OSBg

Here long strings are formatted with a total display width of 50 characters. To show a

short version (restricting the value to a single line and truncating it if needed),

set the short flag to true:

 print({'first':random_string(64), 'second':random_string(64)}, {'short':true,
'width':50})
 first : FLYj-L8HA2PUfuyw9Z09qdQOaE7x7w3BjzSPQTFiilF2...
 second : ydViwpcAO2mNCkAjvepnOlYAzvavAtVn2LVp3ofDAs4t...

Note that this only works at the top level and embedded stems are

printed in their to_string format.

 print({'p':{'a':'x','b':'y'},'q':{'c':'z','d':'w'}})
p : {a:x, b:y}
q : {c:z, d:w}

query

Description

Query a stem using the JSON Path language. This is found in the JSON Path specification. In large and
very complex stems, it is sometimes necessary to search the stem. JSON Path is a very clean way to do
this and works extremely well with QDL.

Usage
query(arg., query_string{, return_indices})

Arguments

arg. - the stem that is the object of the search.

query_string - A JSON Path query. The specification is fully supported

return_indices - (optional) boolean to return the indices only, no results. Default is false.

Output

A stem either of the results themselves or, optionally, the indices where the results reside.

Examples

A very, very simple minded example is here.

 a. := {'p':'x', 'q':'y', 'r':5, 's':[2,4,6], 't':{'m':true,'n':345.345}}
 query(a., '$..m')
[true]
 ndx. := query(a., '$..m',true)
 ndx.
[[t,m]]
 a.ndx.0; // same as a.t.m
true
// Alternately, to just change the found indices into a simple list, use remap
 remap(a., ndx.)
[true]

So in this case we have a simple example. The query uses $.. which tells it to simply start searching
until it hits a key of m someplace. The first query just returns the result there – always a list with a
single value. The second query with the optional flag set to true returns the index for the value, here
[t,m]. An example of accessing the value of the stem using the index is shown. More compactly,

https://tools.ietf.org/id/draft-goessner-dispatch-jsonpath-00.html

 a.query(a., '$..m',true).0
true

rank

Description

Get the rank of a stem, i.e., the number of independent axes.

Usage
rank(arg.)

Arguments

arg - a list stem or scalar.

Output

The rank, which is equal to the size of the dimension vector. If this is a arg scalar, the result is 0.

Example
 rank([;5])
1

Since there is one independent axis for a vector.

remap

Description

Usage
remap(source., indices.);
remap(source., old_indices., new_indices);

Arguments

Dyadic case:

source. = the stem list to take a subset of

indices. = stem that determines which elements to take

Note that the contract is

out. := remap(source., indices.);

and indices. is of the form

indices. := {k_0:v_0, k_1:v_1, . . ., k_n:v_n}

so that the result fulfills

out.k_j := source.v_j

A very useful function to learn about is m_indices in the extensions module, which makes it
extremely easy to create multi-indices for remap.

Triadic case:

source. = the stem list to take a subset of

old_indices. = stem that determines which elements to take

new_indices. = stem that determines the indices of the result

Note that the contract is

out. := remap(source., old_indices., new_indices.);

old_indices. := {k_0:v_0,. . . , k_n:v_n}
new_indices. := {k_0:r_0,. . . , k_n:r_n}
out.r_j == source.v_j

Output

A stem with values remapped by the argument(s). This does not alter source.

Examples

Subset can also be used with higher rank stems. Remember that for a stem a.,

 a.[p,q] == a.p.q

This lets you select like so:

 a. := n(3,4,n(12))
 remap(a., [[0,1],[1,1],[1,1],[1,1],[2,3]])
[1,5,5,5,11]

Example of creating another array from a given array.

This function returns a more or less linear set. Rather than have some extremely complex way to
specify what the resulting shape is going to be, you should take the result of this and use it with, other
functions to get what you want.

 b. := n(4,5, 3*n(20)-7)
 b.
[
 [-7,-4,-1,2,5],
 [8,11,14,17,20],

 [23,26,29,32,35],
 [38,41,44,47,50]
]
 n(2,2, remap(b., [[1,1],[3,2],[1,-1],[3,4]]))
[
 [11,44],
 [20,50]]

Finally, remember that this works on the zeroth axis unless otherwise specified.

 remap(b., [1,2])
[
 [8,11,14,17,20],
 [23,26,29,32,35]
]

Examples comparing integer and stem addressing
 a. := [;16]*3 -8
 a.
[-8,-5,-2,1,4,7,10,13,16,19,22,25,28,31,34,37]

 remap(a., [4;8])
[4,7,10,13]

 remap(a., 4, 8)
[4,7,10,13,16,19,22,25]
 remap(a., [-3;4])

[31,34,37,-8,-5,-2,1]

 b. := (3*[;7]-5)~{'a':42, 'b':43, 'woof':44}
 remap(b.,'woof'~[2,5,6]~'a')
[44,1,10,13,42]

 remap(b., list_keys(b.)); // linearize a stem to a list
[-5,-2,1,4,7,10,13,42,43,44]

Final example: Completely remapping the elements

Let us say we wanted to create the transpose of an n x m stem, a. if the transpose is t. then

t.i.j := a.j.i

This just means to swap (i.e. reverse) the order of the indices.

 a. := n(3,5,n(15))
 a.
[
 [0,1,2,3,4],
 [5,6,7,8,9],
 [10,11,12,13,14]
]

 old. := indices(a.-1)
 new. := for_each(@reverse, old.)
 b. := remap(a., old., new.)
 b.
[

 [0,5,10],
 [1,6,11],
 [2,7,12],
 [3,8,13],
 [4,9,14]
]

Example. Higher dimension re-ordering of the axes

List us say we wanted to change the a 3 x 4 x 5 stem to a 5 x 3 x 4, so that the permutation of the axes
is [2,0,1]. This can be done very simply as follows.

 w. := n(3,4,5, n(60)); // original stem
 old. := indices(w., -1); // last axis is always complete set of indices
 new. := for_each(@shuffle, old., [[2,0,1]])
 z. := remap(w.,old., new.)

To compare, the first bits of w. and z. are

 w.
[
 [
 [0,1,2,3,4],
 [5,6,7,8,9],
 [10,11,12,13,14],
 [15,16,17,18,19]
], . . .

and

 z.
[
 [
 [0,5,10,15],
 [20,25,30,35],
 [40,45,50,55]
], . . .

Note again that

z.i.j.k == w.k.i.j

reduce ()⊙

Description

Apply a dyadic function pairwise to each member of a list, returning the final output only. This operates
on the zero-th axis by default. This may be applied to sets and generic stems

Usage
reduce(@f, arg)
reduce(@f(), list.{,axis})

Arguments

@f() - reference to a function or operators

First form:

arg - A generic stem (so has non-list entries), a set or trivially a scalar.

Second form:

list. - the list to be operated upon. Since list reduce implies ordering, a list is needed rather than a
general stem (which has no canonical ordering).

axis - (optional) which (signed) axis. Default is 0. If added to the first form, it is ignored.

Output

A scalar in all cases.

Examples
 reduce(@*, {1,2,3,4,5}
120

This applies multiplication to every element in a set. Similarly, we can apply a dyadic operator to every
member of a generic stem:

 reduce(@*, {'a':2, 'b':4, 'c':6})
48

Once more, this will apply the operator to every entry in a set or stem. Do be careful of non-
commutative functions since there is no control of the order in which entries are processed.

Is a list equal to itself?

 reduce(@&&, n(5) == n(5))
true

This is equivalent to applying the and operator, && between each element of the argument. In this
case, the result is true if and only if each element of the list is true. See also the expand function
which returns the list of intermediate results.

In higher dimension stems, you can use the axis function to specify a different axis. For instance, if

 say(x. :=[[2,3],[-1,-1]], true)
[
 [2,3],
 [-1,-1]
]

if you apply reduce, this adds to elements together:

 reduce(@+, x.)

[1,2]

which is the same as issuing

 reduce(@+, transpose(x.. 0))

If you specify the last axis (which are the columns) then the addition is column is added:

 reduce(@+, transpose(x., -1))
[5,-2]

Example on a generic stem.

If we have the following stem

a.'foo' := 'abctest0';
a.'bar' := 'abctest1';
a.'baz' := 'deftest2';
a.'fnord' := 'abdtest3';

How can we check if any of these start with abc? You should find out which satisfy your requirement
like this:

 -1 < index_of(a., 'abc')
{bar:[true], foo:[true], fnord:[false], baz:[false]}

Are any true?

 reduce(@||, -1 < index_of(a., 'abc'))
true

rename_keys

Description

Rename the keys in a stem. See also the keys command.

Usage
rename_keys(target., new_keys.{, overwrite});

Arguments

target. - the stem to be altered

new_keys. - a stem of keys which are a subset of those in target. The values are the new keys.

overwrite - (optional) a flag to force overwriting existing entries. Default is false.

Output

This alters the target. and returns it.

Examples
 a.foo := 42;
 a.bar := 43;
 a.baz := 44;
 key_list.foo := 'a';
 key_list.bar := 'b';
 key_list.baz := 'woof';
 rename_keys(a., key_list.)
{a:42, b:43, woof:44}
 say(a.);
{a:42, b:43, woof:44}

Note that since this changes the keys in the target., the key_list. Unrecognized keys are skipped. A
subset of keys to rename is fine too:

 a.foo := 42;
 a.bar := 43;
 a.baz := 44;
 key_list.foo := 'a';
 key_list.bar := 'b';
 rename_keys(a., key_list.)
 say(a.);
{a:42, b:43, baz:44}

Another example. A common case is that all of the keys in a stem need some transformation. The keys
function will get a stem of the form {key0:key0, key1:key1, . . . } and you make then easily
apply changes to that. QDL works easily on the values of a stem (e.g. a. + 42 only alters the values,
not the keys), so rename_keys allows you to modify the keys. The keys function promotes the keys to
something you can operate on like any other value.

 a.SAML_foo := 'a';
 a.SAML_bar := 'b';
 a.SAML_baz := 'c';
 a.fnord := 'd';
 rename_keys(a., keys(a.)-'SAML_');
{
 bar:b,
 foo:a,
 fnord:d,
 baz:c
}

Note that a.fnord is not effected by this change.

Example. Overwriting values on the rename

This requires a flag to do this.

 c.'x':='X'; c.x_y := 'Y';
 ndx. := {'x_y':'x'};
 rename_keys(c., ndx.);
{x:Y}

Here the value of c.x == c.'x':='X' is overwritten on the rename.

set_default

Description

Set the default value for a stem. If a key is requested but has not been set, the default value is returned.
This allows you initialize a stem without having to explicitly fill in every value. Note especially that the
default value is not figured in to other calculations, such as listing keys.

Usage
set_default(target., scalar | stem.);

Arguments

target. – the stem

scalar | stem. – the default value

Output

This returns the previous default value set for target. or null.

Example. Turning off subsetting

Let us say that we have a stem, a. and wish to naively add another stem to each element:

a. := [[0,0],[0,1],[0,2],[2,0],[2,1],[2,2]]
b. := [2,3]

Simply adding a. + b. yields

 a. + b.
[[2,2],[3,4]]

(One issue is conformability of stems, since this is [a.0 + b.0, a.1+b.1]). Rather than fill up an
entire stem with copies of b., just set it as a default:

b.:={*:[2,3]}
 a.+b.
[[2,3],[2,4],[2,5],[4,3],[4,4],[4,5]]

Default values means you do not have to know anything about the structure of the other stem.

Example. Setting the default

There are equivalent ways of setting the default

 set_default(x., 42)
 x. := x. ~ {*:42}

Example. Setting the default does not alter the keys

 set_default(x., 1);
 say(x.);
[]

So no values have been defined. Let's set one and check it:

 x.0 := 10;
 say(x.);
[10]

And if we needed to access a value of x. that has not been set

 say(x.1);
1

Just to emphasize, default values are not used in most stem operations.

 say(get_keys(x.));
[0]

shuffle

Description

Permute, i.e.shuffle a stem, given a complete list of its keys. Note especially that an incomplete list of
keys will fail.

Usage
shuffle([int] | [source., permutation.])

Arguments

int = a positive integer

source. = the stem to be shuffled

permutation. = a list of keys for source. These give the new value of the indices.

Output

A stem consisting of shuffled elements. If the argument is an integer, then the returned output is a list
[0,1,…,n-1] that has been randomly permuted. If the arguments are a pair of stems, the result is the first
argument permuted according to the second.

Example: Making a permutation
 shuffle(5)
[2,4,3,0,1]

This creates a list of integers and then arranges them in random order.

Example: Permuting the elements directly

In this example, we permute the elements of a vector

 q.:= 10+3*[;5]
 q.
[10,13,16,19,22]
 shuffle(q., [4,2,3,1,0])
[22,16,19,13,10]

How to read this1?

/ \

|0 1 2 3 4|

|4 2 3 1 0|

\ /

So the top row are the indices in the vector, the bottom row is the new value.

so old index 0 → new index 4, old index 1 → new index 2, etc. This works generally with stems too.

 a.p:='foo';a.q:='bar';a.r:='baz';a.0:=10;a.1:=15;
 b.q :='r';b.0:='q';b.1:=0;b.p:=1;b.r:='p';
 a.
{0:10, 1:15, p:foo, q:bar, r:baz}
 b.
{0:q, 1:0, p:1, q:r, r:p}
 shuffle(a., b.);
{0:bar, 1:10, p:15, q:baz, r:foo}

1 OK, I'll confess. This is from Abstract Algebra and referred to as cycle notation. QDL generalizes the indices as it is
wont to do.

size

Description

Return the size of the argument

Usage
size(var)

Arguments

var – any variable or argument

Output

This varies.

• stem – the number of keys (this does not check if there are stems as values)

• string – the length of the string

• boolean, integer, decimal – zero, since these are scalars.

Examples
 size(42)
0
 size('abcd')
4
 size([;10])
10

star (* in extractions)

Description

A functional analog of the wildcard, *, used with extraction operator. This allows for creating
expressions on the fly as regular lists.

Usage
star()

Arguments

None

Output

None

Examples

in extractions. That assumes the full set of indices in context.

a* == a\star()

This is most useful if you are constructing an argument for extraction, e.g.

 a.:=n(3,4,n(12))
 a\>(1~(size(a.)<4?star():[2,4]))
[4,5,6,7]

Note that this creates (in this case) the expression a\>[1,*] meaning go to the first element, return
everything. Compare with say

 a\>[2,[1,3]]
[9,11]

to_json

Description

Convert a stem to a JSON string. Note that JSON = JavaScript Object Notation is a common way to
represent objects and is treated as a notation, not a data structure. See the extended note in the
from_json section. Not every stem can be converted to a JSON object. For instance, stems allow for
cycles which JSON cannot resolve. Also, nulls in QDL are rendered as a reserved string since there is
no analog of them.

Usage
to_json(stem.{,indent, convert_type})

Arguments

stem. = the stem to represent in JSON notation. Unlike from_json, this will convert the entire stem to
JSON, not just the elements of the stem. If you really need to convert elements either loop or use
for_each.

indent (optional) = whether or not to indent the resulting string to make it more readable. This controls
how much whitespace is added. The higher the number, the more space in the result. Usually a value of
1 or 2 is sufficient for most cases.

convert_type - the type of decode to use on the keys,

So these are valid calls

to_json(stem.) – do not convert the names

to_json(stem. 2) – indent the output with a spacing of 2

to_json(stem., 2, 32) – convert so that the spacing is 2 and the keys, which were encoded in base
32, are properly decoded.

Output

A string in JSON which represents the argument.

Examples
 a. := [;3]
 a.woof := 'arf'
 to_json(a.)
{"woof":"arf","0":0,"1":1,"2":2}
 // and just to show how to indent the result
 to_json(a.,1)
{
 "woof": "arf",
 "0": 0,
 "1": 1,
 "2": 2
}

Large JSON objects are often best handled through files or other means rather than directly.

 claims. := from_json(read_file('/tmp/claims.json'));
 size(claims.)
137

An example where you convert a stem to a JSON object but do not want the variables converted with
decode:

 a.$a := 2;
 a.$b := 3;
 to_json(a., false)
{"$a":2,"$b":3}

So the names of the variables are turned in to JSON unaltered.

Again, JSON is a notation for an object and you must know what the structure of the object is and all
the particulars about it to do anything useful with it.

transpose, (⦰)

Description

Take a stem (of higher dimension) and transpose the dimensions. This permits you to restructure stems
as needed. A simple case yeilds the transpose of a matrix and the operator is chosen to show the axis ⦰
about which the transpose happens.

Usage
transpose(arg.{, a | p.})
{a|p.} arg.⦰

Arguments

arg. - the stem to operate upon

a - (optional, integer) the axis. This may be signed, so a := -1 would operate on the last axis of the
arg. , whatever that is. Signed axes means you don’t need to know the structure of the argument ahead
of time.

p. - (optional, simple list) a permutation of the dimensions. A partial list of indices is interpreted as

p. ~ ~exclude_keys([0,1,…, rank-1], p.)

For instance, if you have a massive stem, x. with

dim(x.) == [4,2,6,5,8,7,9,11,15,6]

 0 1 2 3 4 5 6 7 8 9 << -- indices of the dimensions

 and

p. := [3,7,1]

then the resulting permutation of x. would be

[3,7,1,0,2,4,5,6,8,9]

and

 dim(x., p.)
[5,11,2,4,6,8,7,9,15,6]

Finally, remember that this works on the zeroth axis unless otherwise specified so if a. is an n×m array,
transpose(a.) is the standard matrix transpose m×n array, hence the name.

Examples comparing integer and stem addressing
 a. := [;16]*3 -8
 a.
[-8,-5,-2,1,4,7,10,13,16,19,22,25,28,31,34,37]

 remap(a., [4;8])
[4,7,10,13]
 // compare with the subset function (since a. is a simple list)
 sublist(a., 4, 8)
[4,7,10,13,16,19,22,25]

 remap(a., [-3;4])
[31,34,37,-8,-5,-2,1]

 b. := (3*[;7]-5)~{'a':42, 'b':43, 'woof':44}
 remap(b.,'woof'~[2,5,6]~'a')
[44,1,10,13,42]

 remap(b., list_keys(b.)); // linearize a stem to a list
[-5,-2,1,4,7,10,13,42,43,44]

Final example: Completely remapping the elements

Let us say we wanted to create the transpose of an n x m stem, a. if the transpose is t. then

t.i.j := a.j.i

This just means to swap (i.e. reverse) the order of the indices.

 a. := n(3,5,n(15))
 a.
[
 [0,1,2,3,4],
 [5,6,7,8,9],
 [10,11,12,13,14]
]

 old. := indices(a.-1)
 new. := for_each(@reverse, old.)
 b. := remap(a., old., new.)
 b.
[
 [0,5,10],
 [1,6,11],
 [2,7,12],
 [3,8,13],
 [4,9,14]
]

(And, yes, transpose(a.) would do this.)

Example. Higher dimension re-ordering of the axes

List us say we wanted to change the a 3 x 4 x 5 stem to a 5 x 3 x 4, so that the permutation of the axes
is [2,0,1]. This can be done very simply as follows.

 w. := n(3,4,5, n(60)); // original stem
 old. := indices(w., -1); // last axis is always complete set of indices
 new. := for_each(@shuffle, old., [[2,0,1]])
 z. := remap(w.,new., old.)

To compare, the first bits of w. and z. are

 z.
[
 [
 [0,1,2,3,4],
 [5,6,7,8,9], . . .

and

w.
[
 [
 [0,5,10,15],
 [20,25,30,35],

 [40,45,50,55], . . .

and

z.i.j.k == w.k.i.j

Output

The restructured stem. Of course, arg. is never altered.

Note: You really don’t need to obsess over what the result is. The usual usage is that you are simply
describing what part of the data should be acted upon and you need never need to gaze upon the output.
There is an excellent argument that this should be made into an operator. However, it is much more
flexible to have it as a function. If you wish to be terse, use the operator (\u29b0) ⦰ for this, e.g.

-1⦰arg.

Examples

The next example is shorter than it looks. Just notice the patterns of how the data moves

 a. := n(2,3,4, 10+n(24))
 a.
[
 [
 [10,11,12,13],
 [14,15,16,17],
 [18,19,20,21]
],
 [
 [22,23,24,25],
 [26,27,28,29],
 [30,31,32,33]
]
]
 // The original is always the same as transpose(a., 0) == a.
 transpose(a., 1); // glom the rows together, dim is 3×2×4
[
 [
 [10,11,12,13],
 [22,23,24,25]
],
 [
 [14,15,16,17],
 [26,27,28,29]
],
 [
 [18,19,20,21],
 [30,31,32,33]
]
]
 transpose(a., 2); // glom the columns together, dim is 4×2×3
[
 [
 [10,14,18],
 [22,26,30]

],
 [
 [11,15,19],
 [23,27,31]
],
 [
 [12,16,20],
 [24,28,32]
],
 [
 [13,17,21],
 [25,29,33]
]
]

Now for an example of a complete remapping of the indices. The stem has indices i, j, k and the right
argument says that the output, call it output. satisfies

 output.j.k.i := a.i.j.k

This looks like

 transpose(a., [1,2,0]) // dim is 3×4×2
[
 [
 [10,22],
 [11,23],
 [12,24],
 [13,25]
],
 [
 [14,26],
 [15,27],
 [16,28],
 [17,29]
],
 [
 [18,30],
 [19,31],
 [20,32],
 [21,33]
]
]

Reducing things along axes.

So axis 0 are boxes, axis 1 is rows and axis 2 (last axis) is the columns. If you wanted to reduce down
the columns, you’d issue (here -1 for the axis has the same effect as 2 for the axis)

 reduce(@+, reduce(a., -1))
[
 [46,62,78],
 [94,110,126]
]

Note that the shape of a. is 2×3×4 and summing along the last axis gets rid of it, so that the final shape
of the reduced answer is 2×3. If you wanted to sum the rows together, you’d issue

 reduce(@+, transpose(a., 1))
[
 [42,45,48,51],
 [78,81,84,87]
]

The rows are added together and the 2×3×4 stem is reduced to 2×4

The standard operation for all built in functions is to operate on the zero-th axis, so

 reduce(@+, a.)
[
 [32,34,36,38],
 [40,42,44,46],
 [48,50,52,54]
]

 Yields a 3×4 from the original 2×3×4 stem, adding the boxes together.

Example. Matrix multiplication

In this example we are going to show how to use the axis function to multiply two matrices. In general,
to multiple an n×m and m×n matrix dimensions must match. Our two matrices are

 say(x. := [[1,2,3],[4,5,6]], true)
[
 [1,2,3],
 [4,5,6]
]
 say(y. := [[10,11],[20,21],[30,31]], true)
[
 [10,11],
 [20,21],
 [30,31]
]

This done by multiplying the rows of the first matrix by the columns of the second, then summing. In
QDL, you’d do this as

z. := for_each(@*, x., transpose(y.-1))

which is a 2×2×3 stem. For the summation, do it along the last axis:

 reduce(@+, tranpose(z., -1))
[
 [140,146],
 [320,335]
]

All together, the complete program to multiply two matrices of dim n×m and m×n is a single line:

mm(x., y.) → reduce(@+, transpose(for_each(@*, x., transpose(y., -1)) ,-1));

This function is defined in the mathx module.

unbox

Description

Takes a stem variable and splits it up, turning each key in to a variable.

Usage
unbox(stem.{, safe_mode_on});

Arguments

stem. - the stem to unbox

safe_mode_on - (optional) a boolean which when true (default) will not overwrite variables in the
current workspace and when false will. Note that this is an all or nothing proposition: safe_mode_on =
true means that nothing will get processed if there is a clash.

Output

A true if the result worked.

Examples
 a. := [-5;0];
 b. := [5;10];
 c. := box(a., b.);
)vars
c.
 unbox(c.);
)vars
a., b.

union

Description

Take a set of stems and put them all together in to a single stem

Usage
union(stem1., stem2., ,,,);

Arguments

The arguments are either stems or variables that point to stems.

Output

The output is a new stem that contains all of the keys. Note that if there are multiple keys then the last
argument with that key is what is set. The result is guaranteed to have every key in all the arguments in
it. See also join.

Examples
 a. := -5 + [;10];
 b. := 5 + [;5];
 a.arf := 'woof';
 b.woof := 'bow wow';
 c. := -20 + [;3];
 union(a., b., c.)
[-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,-20,-19,-18]~{
 arf:woof,
 woof:bow wow
}

Note 1: that in this example these stems have some keys contained in the previous one.

Note 2: Lists are appended to the end of the current list.

Example.Compare with ~ operator

 p.6 := 100;
 p.~[1,2,3]
{
 6:100,
 7:1,
 8:2,
 9:3
}
 union(p., [1,2,3])
[100,1,2,3]

In this case, there was one entry with an integer index (6) in p., appending the list tacks it on to the end
of the current list rather than overwriting elements.

values

Description

Return the set of values in a stem.

Usages

values(arg)

Arguments

arg = The argument. This may be a stem or scalar. If a scalar, then the value itself wrapped in a set is
returned.

Output

A set of the unique values. Note that this will look through every set for a value.

Examples

In this example, a couple of lists are

 values(['a',2,4,true]~['a','b',0,3,true])
{0,a,2,b,3,4,true}

Another example, showing that this onlvaly applies to lists, not whole stems:

 values({'p':'q'}~{'p':'r'}~(2*[;3])~(2+[;4]))
{0,2,3,4,5}

Input and output

dir

Description

List a directory content

Usage
dir(arg)

Arguments

arg - the path to a directory. It may also be in a virtual file system

Output

A stem list of the elements of the directory

Examples
 dir('qdl-vfs#/zip/root')
[scripts/, other/, readme.txt]

This lists the given directory in the mounted VFS. Note that in this case it so happens to be a zip
archive of a file, mounted at qdl-vfs#/zip/.

mkdir

Description

Make a set of directories in a file system

Usage

mkdir(arg)

Arguments

arg -- a path. All of the intermediate paths will be created as needed.

Output

A boolean, true if the operation succeeded and false otherwise.

Examples

An example of trying to make a directory in a read-only VFS will fail:

 mkdir('qdl-vfs#/zip/foo')
Error: You do not have permissions make directories in the virtual file system

Making a directory in a system that is writeable works fine:

 mkdir('qdl-vfs#/pt/woof-123')
true

rmdir

Description

Remove an empty directory from a file system.

Usage
rmdir(arg)

Arguments

arg – a path in a file system to an empty directory. You must remove all files and sub-directories for
this to work. Also, unlike mkdir, this will only remove the last component.

Output

A true if this succeeded and a false otherwise.

Examples

rm

Description

Remove a single file from a directory.

Usage
rm(arg)

Arguments

arg -- the full path to the file

Output

A true if this succeeded, false otherwise

print, say

Description

Print out the argument to the console. The two functions say and print are synonyms. Use whichever
you prefer for readability.

Usage
say(arg {,prettyPrintForStems})

Arguments

arg – anything.

prettyPrintForStems (optional) -IF arg is a stem, try to print a pretty version of it, defined as being
more vertical.

Output

The printed representation of the argument will be put to the console and the value returned is
whatever was printed (so you can embed it in other statements – a very useful debugging trick.)

Examples

The momentous entire “Hello World” program in QDL:

 say('Hello World');
Hello World

And since 42 is the answer to all Life's questions (as per the Hitchhiker's Guide To The Galaxy)

 say(42);
42

Here is an example of how to use this to intercept and print out an intermediate result,

 a := say(432 + 15);
447

Pretty print only applies to stems. It attempts to make a somewhat more human readable version

 f. := [;6];
 say(f., true);
[0,1,2,3,4,5]

file_read

Description

Read a file. The result is always a string

Usage
file_read(files.{, types.})
file _read(file_name {, as_string | to_list | is_binary | is_ini})

Arguments

If the first (stem) form,

files. = stem of full file paths to read

types. = stem with corresponding entries of files with their type. Missing entries use default type.

If the second (scalar) form

file_name – the full path to the file. This may be in a virtual file system too.

The next argument is optional and is an integer

as_string = -1 – return the contents of the file as one long string (default).

is_binary = 0 – return the result as a base 64 encoded string of bytes.

to_list = 1 – return the result as a stem list each line separate

is_ini = 2 - parse the file as a QDL initialization file.

If no second argument is given, the result is simply a string of the entire contents of the file. Note that
these constants are available via constants() as file_types.

Output

Stem form: A stem where each entry has a the content of the file a its value.

Scalar form: Either a simple string (only file name is given), a stem if it is flagged as a list or ini file
(see separate documentation for how ini files work) or a base64 string if it is flagged as binary.

Examples
cfg. := file_read('/var/lib/tomcat/conf/server.xml', 1);

Would read in the file /var/lib/tomcat/conf/server.xml and return a stem. Each line in the file is in order
in cfg.0, cfg.1, … Compare this with

big_string := file_read('/var/lib/tomcat/conf/server.xml');

Which reads the same file and puts the entire thing in a single string.

my_b64 := file_read('/var/lib/crypto/keystore.jks' , 0);

this reads the keystore.jks file (which is binary) and base64 encodes it, storing it in the my_b64
variable. QDL does not have the capacity to do low-level operations on binary data, but it can move
them where they need to go faithfully.

A couple of more examples:

 // read a file as a stem
 say(file_read('/home/ncsa/dev/ncsa-git/security-lib/ncsa-qdl/src/test/
resources/hello_world.qdl',1));
{/*, The expected Hello World program. , Jeff Gaynor, 1/26/2020, */, say('Hello
world!');}

 // read the exact same file and turn the bytes into a base 64 string.
 say(file_read('/home/ncsa/dev/ncsa-git/security-lib/ncsa-qdl/src/test/
resources/hello_world.qdl',0));
LyoKICBUaGUgZXhwZWN0ZWQgSGVsbG8gV29ybGQgcHJvZ3JhbS4gIAogIEplZmYgR2F5bm9yCiAgMS8yNi8
yMDIwCiovCnNheSgnSGVsbG8gd29ybGQhJyk7Cg

say(decode('LyoKICBUaGUgZXhwZWN0ZWQgSGVsbG8gV29ybGQgcHJvZ3JhbS4gIAogIEplZmYgR2F5bm9
yCiAgMS8yNi8yMDIwCiovCnNheSgnSGVsbG8gd29ybGQhJyk7Cg'));
/*
 The expected Hello World program.
 Jeff Gaynor
 1/26/2020
*/
say('Hello world!');

(This is the sample hello world program for qdl).

file_write

Description

write contents to a file

Usage
file_write(files.)
file_write(file_name, contents{,type})

Arguments

If the first (stem) form:

files. = a stem of entries to process. Each entry has

key value
path The full path to the file

content Either a string or stem of strings.
type (optional) either the integer file type or if a boolean, true means to base 64 encode it.

Any entry that is not of this form is ignored.

If the second (scalar) form:

file_name – the name of the file.

contents = A string or a stem list. If the stem is not a list (so indices 0, 1, …) then this will fail.

type (optional) – an integer of one of the following

as_string = -1 – treat the contents of the file as one long string (default).

is_binary = 0 – treat the contents as a base 64 encoded string of bytes and decode to binary.

to_list = 1 – treat the contents as a stem list each line separate

is_ini = 2 - treat the contents as an ini file and write it in that format.

If you omit the type, it is assumed that the contents should be treated as text.

Output

Returns true if this succeeded.

Examples
 hello_world :=
'LyoKICBUaGUgZXhwZWN0ZWQgSGVsbG8gV29ybGQgcHJvZ3JhbS4gIAogIEplZmYgR2F5bm9yCiAgMS8yNi
8yMDIwCiovCnNheSgnSGVsbG8gd29ybGQhJyk7Cg';
 file_write('/tmp/test.qdl', hello_world, 0);

This is just the base64 encoded hello_world.qdl script from the read_file example. The argument of 0
says it is base 64 encoded and to decode it to the file. In this example, you can go check it just decodes
to the Hello world program.

The same example in stem form

 file_write([{'path':'/tmp/test.qdl', 'content':hello_world, 'type':0}]);
[true]

This writes a list of files (with a single entry) and returns a stem with the same shape, i.e. a list that
contains if the operation worked.

scan

Description

Prompt a user for input

Usage
scan([prompt])

Arguments

prompt (optional) – something to print out, probably cuing the user.

Output

Whatever the user types in as a string. There is no end of line marker returned.

Examples
 response := scan('do you want to continue?(y/n):');
do you want to continue?(y/n):y
 say(response);
y

So the user sees the prompt (in this case “do you want to continue?(y/n):”) and types in the response of
“y”, which is stored in the variable response. In this next example we input a loop in buffer mode, then
execute it. (This assumes that local buffering is on in the workspace so you can use the)edit
command).

)edit
edit> i
stop_looping := 'n';
while[
 stop_looping != 'y'
]do[
 stop_looping := scan('stop looping? (y/n):');
]; //end do
.
edit>q
stop looping? (y/n):foo
stop looping? (y/n):bar
stop looping? (y/n):y

Only when we enter the expected response of “y” does it stop.

vfs_mount

Description

Mount a virtual file system

Usage
vfs_mount(cfg.)

Arguments

cfg. = a stem that contains the configuration for this type.

permissions (optional) = the permissions the VFS has. These are 'r' for read and 'w' for write. If
omitted, the VFS is mounted in read-only mode.

Required entries for the following types

type = the type of virtual file system. Allowed values are

 pass_through
 mysql
 memory
 zip

scheme = the scheme (label) for this system

mount_point = the internal path (starts with a /) for programs to refer to.

access = (optional) the permissions, 'r' for readable, 'w' for writeable or 'rw' for both. Omitting this
mounts the VFS in read-only mode.

Here are the supported other parameters by type.

memory

No other parameters are required.

Example

cfg.type :='memory';
cfg.scheme := 'ram-disk';
cfg.mount_point := '/vfs/cache';
cfg.access := 'rw';
vfs_mount(cfg.);

This would create a memory store mounted at /vfs/cache and accessible with the prefix ram-disk, e.g.

read_file('ram-disk#/vfs/cache/bigfile.txt);

pass_through

root_dir = The directory that servers as the root for this VFS. All files and directories will be created
under this

zip

zip_file = the absolute path to the zip file that will be mounted. All zip-based VFS are read only.

mysql

This has a lot of parameters for connecting to a database

Output

A 0 if there was no problem.

Examples

In this example, we will mount a local file system and read a file. We mount the VFS for both reads and
writes. You refer to a file in the vfs seamlessly using the scheme to prefix it.

 cfg.type :='pass_through';
 cfg.root := '/home/ncsa/dev/qdl/scripting';
 cfg.mount_point := '/';
 cfg.scheme := 'qdl-vfs';
 cfg.access:= 'rw';
 vfs_mount(cfg.);
0
 read_file('qdl-vfs#/client.xml')
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
<comment>OA4MP stream store</comment>
… lots more

Another way of doing the previous example.

You can also just set all the parameters and box them up. This will, or course, remove these from the
symbol table.

 type :='pass_through';
 root := '/home/ncsa/dev/qdl/scripting';
 mount_point := '/';
 scheme := 'qdl-vfs';
 permissions := 'rw';
 cfg. := box(type,root,mount_point,scheme, permissions);
 vfs_mount(cfg.);

So the given file is loaded and read. All file operations behave normally. The reason for virtual file
systems is two-fold. First off, if QDL is running in server mode, directories may be mounted in read

only fashion to provide access to libraries, modules and such in a completely installation independent
way. Secondly, when QDL is running in server mode, all standard file operations are prohibited but you
may still have virtual ones. This allows a server to, for instance, mount a jar file with libraries in it.

(The reason for this on a server is security: Often servers run with enhanced privileges which may be
inherited by applications. QDL always seeks to be a good citizen and only allows what is specifically
granted to it.)

vfs_unmount

Description

Unmount a virtual file system. Once unmounted, no operations on that file system can be performed.
This does nothing to the underlying file system, it just removes the mount point in the current session.

Usage
vfs_unmount(mount_point)

Arguments

mount_point - the scheme delimited mount point. This must be exact or the operation will fail.

Output

A boolean that is true if the operation succeeded. Otherwise an error is raised if, for instance, the
mount point is invalid.

Examples

Listing the vfs’s in the workspace yields

)ws vfs
Installed virtual file systems
type:mysql access:rw scheme: vfs mount point:/mysql/ current dir:(none)
type:memory access:rw scheme: vfs mount point:/ramdisk/ current dir:(none)
type:pass_through access:rw scheme: vfs mount point:/pt/ current dir:(none)

and to unmount vfs#/ramdisk/ you would issue

 vfs_unmount(‘vfs#/ramdisk/’)
true

Checking the listed VFS’s yields

)ws vfs
Installed virtual file systems
type:mysql access:rw scheme: vfs mount point:/mysql/ current dir:(none)
type:pass_through access:rw scheme: vfs mount point:/pt/ current dir:(none)

Any operations on vfs#/ramdisk/ will now fail.

Scripts
A script is simply a sequence of QDL commands in a file. You may run scripts in a variety of ways and
these commands let you do it from in the workspace.

args

Description

Get the arguments to the current script as a list. If there is no script, then this is empty.

Usage
args({index})

Arguments

script_args([index]none - return the whole list of arguments.

index - (optional) integer for the index desired. Note args(n) == args().n

Output

The list of arguments (no index given) or the specific value. Signed indices are allowed since it is
exactly a stem.

Examples

A table relating this with the deprecated script_args:

Old New Description
script_args(-1) args() get the arg list
script_args() size(args()); get the number of args
script_args(n) args(n) OR args().n get arg with index n

check_syntax

Description

Check a string of QDL for syntax errors. This does not actually execute anything! It will simply check
that the given string is valid QDL. Note that there are syntax errors, such as not closing a quote vs
runtime errors, which arise only when the system is tunning because of the state at that point. For
instance

a := 4/b;

would parse fine, but if during execution it turned out that b had a value of 0 (zero) then a runtime error
would happen.

Usage
check_syntax(string)

Arguments

string - a (possibly very long) string of QDL to be checked. This may, for instance, be the entire
contents of a script.

Output

Either an empty string (if everything works) or the message from the parser that contains the line and
position where the first parsing error happens. The parser will exit as soon as it gets any errors, so there
is only one to process.

Examples.

Let us say we had the following, simply electrifying script:

/* A test file */
a
 :=
 3;
b = 'foo;

in the file /tmp/foo.qdl and executed

 check_syntax(file_read('/tmp/foo.qdl'))
line 5:2 mismatched input '=' expecting {'^', '=<', '<=', ';', '*', '/', '++', '+',
'--', '-', '<', '>', '<=', '>=', '==', '!=', '&&', '||', '%', '~'}

(Note that the line wraps here.) This means that on line 5 (lines are counted starting at 1 so line 5 is the
very last line in the file) at position 2 (characters are counted from zero, so the single = there is where
parsing stopped. We all remember that QDL only has compound assignment operators, n'est-ce pas?)
Since QDL could not figure out what to do next, the message is everything it thought might be there.
This gives you a place to start looking, but the parser is not a mind-reader. The message is not telling
you to stick one of those characters at position 2, but that as near it could determine from the grammar,
one of those was probably intended.

If you fix the assignment to := then run it (there is still a missing quote) you get

 check_syntax(file_read('/tmp/foo.qdl'))
missing/unparseable right-hand expression for assignment

Which means that the assignment operator was found and it QDL tried to determine what to assign, but
failed (in this case because the file ended before a close quote was found).

Another example

In this case a file is read (line numbers are in the left hand column):

37: // 37 lines of stuff
38: if[
39: exec_phase == 'post_token' && claims.idp == idp.ncsa
40:][
41: flow_states.accept_requests = has_value('prj_sprout', claims.isMemberOf.);
42:];
43: // many more lines of stuff

 and the following message is displayed:

line 41:32 no viable alternative at input
'if[exec_phase=='post_token'&&claims.idp==idp.ncsa][flow_states.accept_requests='

This means that line 41 of the file had parsing fail at character 32 (the single = sign). Note that the
message has the entire statement (statements end with a ;) up to that point that was being processed so
you can see it in context.

interpret

Description

Send a string to the interpreter and evaluate it.

Usage
interpret(string | stem.)

Arguments

string – the string to be interpreted, i.e. run. This must be a valid QDL statement or it will fail. If there
is not a final semi-colon, it will be added.

stem. - a list stem of strings. These will be executed sequentially.

Output

If the last statement has a result, it will be returned of or a null if the last statement has no result.

Examples
 execute('2 + 2');
4

 execute('say(\'abc\' + \'def\');');
abcdef
abcdef

Here you get two results if the current workspace is set to print results, since you are telling it to say the
value and it is returning it.

 execute('var:=3')

 var
3

Another use of this is to store things as a type of quick serialization for later use:

my_stem. := . . . // lots of stuff
file_write(my_file, input_form(my_stem.));
// then later
my_other_stem. := execute(file_read(my_file));

fork

Description

Start a given script in its own thread, inheriting the current state. Note that these are not the same as
debugging sessions, but are completely separate processes.

Usage
fork(path, arg0, arg1, …)

Arguments

path - the path to the file. The current script path will be searched.

argn -arguments to the script.

Output

An integer that is the process id number for this thread. Note that you may use the kill function with
the pid number to stop the thread if it is active.

Example
 fork(‘vsf#/path/myscript.qdl’, false, [|-pi()/2, pi()/2, 11|])
53575

This means that the given script vsf#/path/myscript.qdl is executing on the thread with pid 53575. If
you want to see all current thread, issue

)si threads
53575 vsf#/path/myscript.qdl

And if you want to stop this thread, issue

 kill(53575)
1

halt

Description

Halt processing of a script at the given line. This is normally used only in a debugging session in the
workspace. See the workspace documentation for a treatment of how this is used.

Usage
halt([message])

Arguments

message - (optional) a message to be displayed in the state indicator.

Output

An integer which is the process identifier (pid). You may use this in the workspace to restart execution,
attach to the state and inspect as well as other things.

Example
a := 2 + 3;
halt(‘a was set’);
// .. other stuff

The effect here is that the script will stop at this point and in the workspace, you might see something
like

) 0 &
11
)si list
pid | active | line | time | size | message
0 | * | | Mon Oct 26 16:15:20 CDT 2020 | 2965 | system
11 | | 1 | Mon Oct 26 16:16:06 CDT 2020 | 3001 | a was set

This shows that this pid, 11, is active and suspended. The ampersand (&) in the run command tell the
workspace to clone its state in toto and run the script inside that. See the workspace documentation for
a full explanation.

input_form

Description

This will return the input form, i.e., what you would enter at the command line, of a variable, module,
function or expression. This is effectively the inverse function for execute.

Usage
input_form(fq_module_name)
input_form(variable{,pretty_print})
input_form(function, arg_count)
input_form(expression)

Arguments

For variables, this is the name, e.g. foo. For modules, this must be fully qualified like
my_alias#baz#fnord. If the flag pretty_print is true then print it out with indenting, otherwise it will
end up on a single, possibly very long line. Expressions will be evaluated and the result will be
converted to input form.

For modules, it is a string that is either the alias or the main module. Note that you can get the input
form for a module that has been imported, but you must load it to print out individual functions (since
these can be redefined by you.) For Java defined modules, there is no source, you simply get the class
name.

For functions, this is the name plus you must supply the number of arguments. Note that for Java-
defined functions, there is no source, you simply get the class name.

Output

A string that can be interpreted to yield the original argument. Note however, that the result is what is
needed, but is not identical. The examples should make this clear and why this is a good way to do it.
Generally variables have their content returned (since you probably want to work with that) and
modules or functions have their complete definitions returned (since you probably want to put it into an
editor, e.g.).

Caveat: If you have an alias and a variable with the same name, input_form of a single argument will
return the module. To get the variable, use the dyadic version with a boolean second argument.
Generally though you should not have variables and aliases that are indistinguishable since that can
lead to confusion.

Example: A variable
 a. := [2,4,6]~'a'~234~(-1.23)~false
 b := input_form(a.)
 b

[2,4,6,'a',234,-1.23,false]

This result is a string.

 input_form((543/11)^10)
8.5915484651856E16
 input_form('abc' + substring('pqr',0,10,'.') + ' foo')
'abcpqr....... foo'

In this case, the expressions are evaluated and the input form is returned.

Example: using input_form and execute

So how to use this with, say, execute? Taking a. as per above:

 a. := [2,4,6]~'a'~234~(-1.23)~false
 execute(input_form(a.))
[2,4,6,a,234,-1.23,false]

Example:A function

If you define a function such as

 f(x)->x^3+3*x^2 +x - 1

You can recover the input form as

 input_form(f, 1)
f(x)
->
x^3+3*x^2+x-1;

Note that this is not exactly what was typed, but is equivalent.

Example: A module

Let us define and import a module

 module['a:a','a']body[foo := 'abar';define[f(n)]body[return(n+1);];];
 module_import('a:a');
a
 input_form(a)
module['a:a','a']body[foo := 'abar';define[f(n)]body[return(n+1);];];

You may also print out the function definition:

 input_form(a#f, 1)
define[

f(n)
]body[
return(n+1)
;
];

Note that this is not quite the same as the original. What always happens is that the source is picked up
after the parser reads it (this is how it gets into QDL) and whitespace such as blanks and linefeeds are
not considered essential, hence may change.

kill

Description

Stop (aka kill) a forked process.

Usage
kill(pid)

Arguments

pid - an integer that is the unique process identification number returned from the fork function.

Output

There are two possible values. A 1 indicates success, a 0 indicates failure.

Examples
 kill(42)
1

Stops the process with pid 42. The result indicates that process has been successfully terminated.

script_args

Description

Deprecated. Use args() instead. When a script is invoked, the arguments to it are given as a list of
strings. This may be either from the command line or an argument to the script_run() or script_load()
functions. Typically this is called inside a running script to access the arguments passed in.

Usage

script_args([index])

Arguments

-1 = return all args as a stem.

index - (optional) an integer in the proper range.

Output

no arguments - the number of arguments is returned.

integer - the argument for that integer.

Examples.

In the case of invoking a script from the command line,

qdl -run my_script.qdl arg0 arg1 arg2

The arguments (e.g. about the first call inside my_script.qdl) would be accessed as

 say(script_args()); // how many passed in?
3
 say(script_args(1)); // print out the second one (indices start at zero.)
arg1

Note that if the script is invoked from the command line, then only strings will result and may have to
be converted to other types, e.g. with the to_number() call.

Note further that this is not a variable for a specific reason. When calling QDL scripts it is possible to
pass along stem variables as part of the argument list. Therefore getting a specific argument may be
done and the type of the result checked as needed.

script_load

Description

Read a script from a file and execute it in the current environment. This means that any variables it sets
of functions it defines are now part of the active workspace. Caution that this will overwrite whatever
you have if there is a name clash.

See also script_run(), script_args(), script_path()

Usage
script_load(file_name{, arg}*)

Arguments

file_name – the fully qualified path to the file

arg0, arg1… - (optional) the arguments for the script

Output

The output of the script, if any.

Examples
script_load('/home/bob/qdl/math_util.qdl', 3,’foo’, false);

Will load the given script and send it the 3 arguments listed.

script_run

Description

Read a script from a file and execute it in a completely new environment. The output of the file is piped
to the current console.

Usage
script_run(file_name{,arg}*)

Arguments

file_name – the fully qualified path to the file

arg0, arg1… - (optional) the arguments for the script

If there is a single argument that is a stem list, then the components of that will be sent to the script as
the arguments.

Output

The output of the script, if any.

Examples
script_run('/home/bob/qdl/format_reports.qdl');

If the script requires command line arguments, you may simply send them along:

script_run('/home/bob/qdl/format_reports.qdl', '-w', 120);

In this case, it is the same as invoking this script from the command line like so:

qdl -run /home/bob/qdl/format_reports.qdl -2 120

General functions
These are functions that are generally applicable and do not fall in to the other categories.

cb_exists

Description

Check if the system clipboard is supported. This operation is not available in server mode.

Usage
cb_exists()

Arguments

none.

Output

A true if the clipboard is readable, false otherwise.

cb_read

Description

Read the contents of the clipboard as a string. This operation is not available in server mode.

Usage

cb_read()

Arguments

none

Output

The contents of the clipboard as a string. Note that leading and trailing whitespace is removed. The
reason for this is that applications can add it as they see fit, so removing it is about the only reasonable
standard policy.

Example
 cb_read()
the quick brown fox jumped over the lazy dog

This means that the given string was in the clipboard.

cb_write

Description

Write a string to the clipboard. This operation is not available in server mode.

Usage
cb_write(arg)

Arguments

arg - the argument. It may be any data type, but it will be converted to a string before being written.
This also includes stems, which are turned into JSON first.

Output

true if the operation succeeded, false otherwise.

constants

Description

Get constants that QDL defines

Usage
constants([name])

Arguments

None – a complete stem consisting all system constants

name – The value associated with this property name.

Output

A stem consisting of various constants described in this document. Since this is a function, you can
either access the values with an argument or a stem index.

Examples
 say(constants(), true)
{
 var_type: {
 boolean:1,
 string:3,

 null:0,
 integer:2,
 decimal:5,
 stem:4,
 undefined:-1
 },
 file_types: {
 string:-1,
 binary:0,
 stem:1
 },
 detokenize: {
 prepend:1,
 omit_dangling_delimiter:2
 },
 error_codes: {
 system_error:-1
 }
}

This consists of the types of variables that are output from the var_type command.

constant() values

Name Value Description
var_type.boolean 1
var_type.decimal 5
var_type.integer 2
var_type.null 0
var_type.stem 4
var_type.string 3
var_type.undefined -1
error_codes.system_error -1 Used in try – catch blocks. If there is some internal error

processing then this is raised and a message set.
file_type.binary 0 Return file contents as base 64 encoded byte stream
file_type.stem 1 Return file contents in a stem list, one entry per line
file_type.string -1 Return file contents as single string
detokenize.prepend 1 See the detokenize function section
detokenize.omit_dangling_d
elimiter

2 See the detokenize function section

info

Description

Get various bits of system information in a stem.

Usage
info([name])

Arguments

None – a stem consisting of all properties

name – If a single property name is specified, that is returned or an empty string if the property is
undefined.

Output

A stem with various bits of system information. This will vary from installation to installation.

Examples

 say(info(), true)
{
 system: {
 processors:8,
 initial_memory:479 MB,
 jvm_version:1.8.0_261
 },
 os: {
 name:Linux,
 version:5.4.0-48-generic,
 architecture:amd64
 },
 user: {
 home_dir:/home/ncsa,
 invocation_dir:/home/ncsa/dev/ncsa-git/security-lib
 }
}

The major bits of this are

• qdl_version = information about the currently running version of QDL and how it was built.

• user = information about the user, such ash their home directory

• boot = information the system used to boot itself.

• os = information about the current operating system QDL is running under and

• system = information about the computer system itself, such as the number of processors, the
current java virtual machine version etc.

• lib = standard extension classes, such as http or database.

Getting a single property.
 info('os.name')

Linux
 info().'os.name' ; // Since it is a stem, you can do this too.
Linux

info() values

Not all of these may be available, depending on various combinations of hardware and systems.

Name Description
user.home_dir The home directory for the user in the ambient operation system
user.invocation_dir The directory from which QDL was started.
system.initial_memory Amount of RAM allocated to QDL at system startup. Depending on

the system, more may be allocated as needed
system.jvm_version The version of the Java virtual machine that is running QDL
system.processors The number of CPUs that are capable of being used by QDL.
os.architecture The architecture (underlying hardware info) for the current operating

system
os.name The name of the operating system
os.version The current version of the operating system
qdl_version.version The actual version of QDL you are running.
qdl_version.created_by The user that compiled this version of QDL
qdl_version.build_jdk The version of the JDK under which this version of QDL was

compiled.
qdl_version.build_nr The build number for this version of QDL
qdl_version.build_time The time stamp when this version of QDL was built
boot.qdl_home The home directory set for QDL. Any relative file operations are

resolved against this
boot.boot_script Path to any boot script that was be run on start
boot.cfg_file The configuration file that was used
boot_cfg.name The name of the configuration in the configuration file
boot.log_file The file used for logging
boot.log_name Entries within the boot file are prefixed with this so they can be

searched for.
boot.server_mode_on Is this running in server mode?
lib.* name of a supplied Java module.

Example. Loading the HTTP module

To get a list of all the standard java modules, issue

 info('lib')
{
 http:edu.uiuc.ncsa.qdl.extensions.http.QDLHTTPLoader,
 db:edu.uiuc.ncsa.qdl.extensions.database.QDLDBLoader
}

(There may be more of these.) Here there are two modules in this distro, one for http access and one for
db access. To load one of these, e.g. the http library, issue

 q:=module_load(info('lib').'http', 'java')
 q
qdl:/tools/db

You can now import this as needed.

 module_import(q)
http

is_defined (,)∃ ∄

Description

A scalar-only function that will return if a given variable is defined, i.e., has been assigned a value.

Usage
is_defined(var) or ∃var, ∄var

Arguments

var is the variable. Remember that stem variables end with a period if you are addressing the entire
thing.

Output

A boolean.

Examples
 a := 'foo';
 is_defined(a)
true

 is_defined(b)
false

 b. := make_index(4);
 b.∃
true

 is_defined(b.1)
true

 is_defined(b.woof)
false

 b.woof; // is this undefined?∄
true
 [a,b.,c] // check a stem of variables for existence∃
[true,true,false]

Note that if a stem is defined, then you can use this to check the elements as well.

is_function (,)∃ ∄

Description

Checks if a symbol is a function.

Usage
is_function(var , arg_count) or f arg_count ∃ or f arg_count∄

Arguments

var is the name of the function or stem of them.

argCount – This is the number of arguments that the function may accept or a stem of them.

Output

A boolean which is true if the function is defined in the current scope.

Examples

In this case, a function, f is defined in a module called mytest:functions

 import('mytest:functions');
 is_function('f',1);
true
 f 1; // same as previous example∃
true
 g null; // ∃ query if there are any functions, regardless of arg count, named g
false
 f 1[;4]; // ∃ Check if f is defined for several argument counts
[true,false,false,true]
 [f,g,h] 1; // check several functions∃
[true,false,true]
 [f,g] [1,2]// subsetting is on, check for f ∃ with 1 arg and g with 2 args.
[true, false]

os_env

Description

Get or list the environment variables for the system. This allow QDL to be called from a script and
have access to the current system environment, such as in bash as $PATH, $HOME, etc. The
difference is that you do not need to supply the leading “$”. If you operating system is case sensitive,
then the variables will be too, so 'path' and 'PATH' may or may not return the same value. This is OS
dependent.

Usage
os_env([arg0, arg1,…])

Arguments

No argument means to list all of the environment variables.

Arguments are the names of properties in the ambient operating system environment. If a single
argument is given, then a single value is returned. If a list of them is given, then a stem of them is
returned. Note that any keys are encoded.

Output

Either a stem or a single string. If a property is not found an empty string is returned (single argument).
If the property is not found in a list, then that property is not returned. This is extremely useful when
writing scripts and allows for seamlessly invoking them. Set any values you need in, e.g., a shell script
and then access them in QDL.

A final note is that in server mode, all requests to get information about the system will only return an
empty string. script_path

Examples
 os_env('HOME')
/home/userName

In this case, the request is for the user's home directory and that is returned.

Another example

This parses the path on unix systems:

 tokenize(os_env('PATH'),':')
[/usr/local/sbin,/usr/local/bin,/usr/sbin,/usr/bin,/sbin,/bin,/usr/games,/usr/
local/games,/snap/bin]

So each element of the list is a path component.

remove

Description

Remove a variable and its values from the symbol table.

Usage
remove(var)

Arguments

var – a variable or string (name of object) to to be removed. If you supply the variable, then that is
removed not its value. If you supply a string (as a constant) then that is removed.

Output

True if it was removed, false otherwise.

Examples

Here we define a stem and check is defined, then remove it.

 t. := [;5];
 say(is_defined(t.));
true

 remove(t.);
 say(is_defined(t.));
false

Here we set a variable then remove it.

 p := 'abc';
 say(is_defined(p));
true
 remove(p);
 say(is_defined(p));
false

script_path

Also, this will remove entries to stems, so

remove(t.b)

will remove the entry with index b from the stem t. Similarly

remove(t.x.)

will remove the entire sub-stem x. Use with care!

 stem.0. := [;3]
 stem.foo:= 5
 stem.
 [[0,1,2]]~{
 foo:5

}
 is_defined(stem.0)
true
 remove(stem.0)
true
 is_defined(stem.0)
false

 stem.
{
 foo:5
}

Another example of passing in variables vs. a string.

Since this causes some confusion, here is an example where a stem is created and an entry is removed
first using a variable and secondly as a string. The key point is that if you supply a variable then its
value is not accessed.

 foo. := [;5]
 remove(foo.3)
truescript_path
 foo.
{
 0:0,
 1:1,
 2:2,
 4:4
}
 remove('foo.2')
true
 foo.
{
 0:0,
 1:1,
 4:4
}

script_path

Description

Get or set the current script path. This only affects script_run() and script_load() This is the set
of all paths (including vfs paths) that will be checked when running scripts. If you run a script with an
absolute path, e.g.

/ home/bob/scripts/init.qdl

Then the script is run. If the path is relative, then it will be checked against the paths in this variable.
Specifying a scheme restricts resolution to that scheme. No scheme means every path will be checked.

So if

 script_path()
{
 0=vfs#/pt/temp/,
 1=/usr/share/qdl
}

Then here are the resolutions for paths

• vfs#init.qdl ==> vfs#/pt/temp/init.qdl

• vfs#ncsa/reset.qdl ==> vfs#/pt/temp/ncsa/reset.qdl

• init.qdl ==> vfs#/pt/temp/init.qdl, /usr/share/qdl/init.qdl

• abc#boot.qdl ==> none, because abc is not a scheme here.

• #boot.qdl ==> /usr/share/qdl/boot.qdl No scheme means to force resolution in the local
file system, which is the default. Note that if QDL is in server mode, this will fail.

Finally, this can (and should) be set in the configuration so please consult the documentation there.

Usage
script_path([string | stem.])

Arguments

none - Return the current list of paths

string - a string of paths in the form path0:path1:path2… i.e., each path is separated by a colon

stem. - a list of paths, one per entry

Output

If no argument, a stem of the current paths. Otherwise true if the path was set from the argument.

Example
 script_path()
[vfs#/mysql/,
 vfs#/pt/temp/
]

In this case, two paths will be checked and both are in virtual file systems.

to_boolean

Description

Convert a value to its boolean representation. This is very useful in places like scripts, where the
argument may be a string (like ‘true’) and must be converted to a boolean. QDL scripts will faithfully
pass along their values, but external scripts can only pass in strings.

Usage
to_boolean(arg)

Arguments

arg - any value, including stems. Conversion is as follows:

boolean - no change

string - returns logical true if the argument is 'true' (case sensitive)

integer - returns true if and only if the value equals 1

decimal - return true if and only if the integer part equals 1.

stems – applied to each element.

Output

A boolean value or values if applicable.

Examples

Examples of converting each type. Note that with the decimal, only the integer portion is checked and
that must be equal to 1 in order to get a true back.

 to_boolean('true')
true
 to_boolean(1)
true
 to_boolean(319/47)
false
 319/47
6.787234042553191
 to_boolean(1.000003)
true
 to_boolean([0,1,0])
[false,true,false]

Description

Convert a scalar or simple stem to numbers.

Usage
to_number(scalar | stem.)

Arguments

scalar – any type is accepted.

stem. – a stem of scalars. At this point nested stems are not processed.

Output

A number or stem of numbers. The types may be mixed (so integers and decimals). Note that boolean
values true and false are converted to resp. 1 and 0. Numbers are simply returned, unchanged. The
value null cannot be converted and if found will raise an error.

Examples

Here is a stem with a few different types (including an integer as the last entry).

 s.0 := '123';
 s.1 := '-3.14159'
 s.2 := true
 s.3 := 365

To convert everything that is not already a number to a number:

 to_number(s.)
[
 123,
 -3.14159,
 1,
 365
]

Here is a check that indeed these are numbers:

 5 + to_number(s.)
[
 128,
 1.85841,
 6,
 370
]

Just as a check, adding 5 to each element will either concatenate if a string or (in the case of s.3) add it:

 5 + s.
[
 5123,
 5-3.14159,
 5true,
 370
]

to_string

Description

Convert a variable to its string representation. This creates the representation used by the print
command but does not output it to the console. It merely returns it.

Usage
to_string(arg{,pretty_print})

Arguments

arg - any variable, stem or scalar-only

pretty_print - (optional) boolean (applies only to stems) prints in vertical format if true.

Output

A string that represents the argument.

Examples

This is quite useful when printing stems. Remember that if you write

'foo' + stem.

The result is to concatenate every element in the stem with 'foo' which is not wanted when printing.

 'args = ' + to_string([;3])
args = [0, 1, 2]

Example say vs. to_string

This will contrast the output of say vs. that of to_string. In the former case, the value of the argument
is returned, in the latter, it is converted to a string.

 say(4 + say(3 + 4));
7
11
 say(4 + to_string(3 + 4));
47

In the first case, 3 + 4 is computed and the value is printed. This is added to 4 and that value, 11 is
printed. In the second case, 3 + 4 is computed and turned in to a string, 7. That is concatenated to 4,
yielding the string 47.

var_type

Description

For a given variable, return an integer that tells what the stored type is. This is very useful in, for
instance, writing switch statements to process the contents of a stem whose elements are unknown.

Usage
var_type(arg0, arg1, arg2, ...)

Arguments

arg0,… Each is an expression (which also means a variable or constant). Note that a list of arguments
returns a stem list whose elements are the types of the arguments.

Output

The possible results are all integers and are

Value Variable type

-1 undefined variable

0 null

1 boolean

2 long

3 string

4 stem

5 decimal

Also, these are output from the constants() command and may be accessed there

Examples

We will define a stem with several elements.

 a.0 := 42
 a.1. := random(3)
 a.2 := 'foo'
 a.4 := true
 a.5 := -34555.554345
 a.6 := null

Note that there is no a.3 element – it is undefined. The entire stem can have its type checked

 var_type(a.)
4

This means it is a stem. Next, we loop through the elements and say what the type of each is. Note that
the key set does not touch a.3 since there is no such element. Note that the last

 while[for_keys(j, a.)]do[say(var_type(a.j));];
2
4
3
1
5
0

 var_type(a.0, a.2, a.3)
[2, 3, -1]

Note that the last one returns a -1, meaning that a.3 is undefined.

For example, how to use it with a switch statement:

)buffer create temp
0| |temp
)edit 0
edit>i
while[
 for_keys(j, a.)
]do[
 type := var_type(a.j);
 switch[
 if[type == -1]then[say('undefined');];
 if[type == 0]then[say('null');];
 if[type == 1]then[say('boolean:' + a.j);];
 if[type == 2]then[say('integer:' + a.j);];
 if[type == 3]then[say('string:' + a.j);];
 if[type == 4]then[say(a.j);];
 if[type == 5]then[say('decimal:' + a.j);];
]; //end switch
]; // end do
.
edit>q
done
) 0
integer:42
{0=-6087687479374980224, 1=-6728256611667942117, 2=5319763765663058324}
string:foo
boolean:true
decimal:-34555.554345
null

(This uses the line editor and an in-memory buffer.)

Another example

Let us say we wanted to check if the variable foo is undefined. If we enter

 var_type('foo')
3

We expect -1 but get 3 back. The reason is that 'foo' is a string. Make sure you don't quote things. This
is right:

 var_type(foo)
-1

ws_macro

Description

Run a set of workspace commands from QDL. These will be run exactly as if you had typed them in at
the console. This allows you to customize a workspace using, e.g., an ini file and the __init() method
of the workspace. It is not intended to be used more than a wee bit for simple WS scripting, such as
setting up a workspace. For instance, you can execute QDL from inside a macro, but if you are doing
that, you might want to consider using a script instead. Scripts are how to get complexity in QDL, not
workspace macros.

The major difference between macros and scripts is that macros allow for workspace commands and
execute in exactly the workspace environment.

Usage
ws_macro(arg | arg.)

Arguments

arg - a string of commands. There may be multiple commands separated with line feeds.

arg. - a list of commands. Each line will be executed in order.

Output

This returns true if the command succeeds or produces an error.

Examples

Sending a single string with line feeds. This will be split and each token will be executed as a separate
command.

 ws_macro(')ws get pp\n)ws get echo\n)ws get external_editor');
pp is on
echo is on
external_editor is line

Sending a stem of commands.

 ws_macro([')ws get pp',')ws get echo',')ws get external_editor']);
pp is on
echo is on
external_editor is line

You can also set this up using an ini file.

[workspace]
defaults:=')ws set pp on',')ws set echo on',')ws set external_editor nano'

would set this to a stem of commands, then you could issue

 ini. := file_read('/path/to/ws.ini', 2);
 ws_macro(ini.workspace.defaults);
pp is on
echo is on
external_editor is nano

And a __init function might look like this

define[
 __init()
][
 ini. := file_read('/path/to/ws.ini', 2);
 ws_macro(ini.workspace.defaults);
];

So on loading the workspace you might see

)load my_workspace
my_workspace loaded
pp is on
echo is on
external_editor is nano

Another example. Loading modules

A common case is to load modules. Let’s say you wanted to write a function to load java modules. You
cannot write a function like this:

 load_it(x)→module_import(module_load(info('lib').x, 'java'));

This runs fine:

 load_it('db')

(loads the database module), but then if you issue the)modules command, no modules are there. Why?
Because the module is loaded inside the function scope and lives there only. The right way to do this is
to have a function that creates a macro:

 load_it(x)→'module_import(module_load(info(\'lib\').' + x + ', \'java\'))'

and then if you run

 ws_macro(load_it('db'))
db
true

it loads the module into the current workspace.

	Introduction
	Cheat Sheet
	Basic syntactic concepts.
	Constants and expressions
	Other notations for numbers
	Inline conditional expressions
	Switch/Select example
	Comparison with select, conditional and mask.
	Monadic operators, or, one gotcha.
	The type operator, <<

	Assigning values
	More assignment operators.
	List assignments

	Weak typing
	Unicode and alternate characters
	Regular expressions

	Reserved keywords

	Basic Data types. Scalars, Sets and Stems
	Scalars
	Sets
	Notes

	Stems
	Compact Notation

	Slice operators
	Open slices
	Closed slices
	Slice Math
	Default values for stems
	Applying scalars to stems
	Tail substitutions.
	More about that trailing period.
	Cavet on name collisions
	The ~ and union operator

	Other stem expressions
	Other ways to access stem elements.
	Stems as indices: Index lists
	The extraction operator
	Creating extractions on the fly with >, >! and star()

	The environment and the lifecycle of variables.
	Visibility during function evaluation

	Control structures
	The if..then..else statement
	The switch statement
	Error handling
	Related functions
	raise_error

	Looping.
	Related Functions
	break
	check_after
	continue
	for_keys
	for_lines
	for_next
	has_value or ∈

	Scope
	Definitions
	Overriding scope.

	Defining functions
	Functions in QDL
	Defining a function with the full formal syntax
	Help
	Overloading
	Overloading System Functions

	Examples
	Lambdas: The short form for functions
	Variable visibility in lambdas and defined functions.
	Summary

	Nesting
	Function visibility and lifetime
	Function references

	Related functions
	return

	Other Topics
	Assertions
	Blocks
	Help in Functions
	Operators or, what’s up with the funny characters?

	Modules
	Module syntax
	Supported operations
	Import, use

	Logging and debugging
	Related functions
	debugger, logger

	Built-in function reference
	String functions
	contains
	detokenize
	differ_at
	from_uri
	head
	index_of
	insert
	replace
	substring
	tail
	to_lower, to_upper
	to_uri
	tokenize
	trim

	Math functions
	abs
	date_ms, date_iso
	decode
	encode
	hash
	identity, i
	max
	min
	mod
	numeric_digits
	random
	random_string
	Transcendental functions

	List functions
	expand (⊕)
	insert_at
	copy
	pick
	reverse
	sort
	starts_with
	sublist

	Stem functions
	box
	common_keys
	diff
	dim
	exclude_keys
	for_each (∀)
	from_json
	has_key (∋, ∌)
	has_value (∈, ∉)
	include_keys
	indices
	is_list
	join
	keys
	list_keys
	mask (⌆)
	n
	print
	query
	rank
	remap
	reduce (⊙)
	rename_keys
	set_default
	shuffle
	size
	star (* in extractions)
	to_json
	transpose, (⦰)
	unbox
	union
	values

	Input and output
	dir
	rm
	print, say
	file_read
	file_write
	scan
	vfs_mount
	vfs_unmount

	Scripts
	args
	check_syntax
	interpret
	fork
	halt
	input_form
	kill
	script_args
	script_load
	script_run

	General functions
	cb_exists
	cb_read
	cb_write
	constants
	constant() values
	info
	info() values
	is_defined (∃, ∄)
	is_function (∃, ∄)
	os_env
	remove
	script_path
	to_boolean
	to_string
	var_type
	ws_macro

