
Writing an Extension in Java
Version 1.3.1

Introduction
QDL has its own system for writing modules, but some times you need to add functionality that is not
in the base system. You may write your own custom Java code and import it. It will function like any
other QDL module. It is really quite simple. There are two interfaces the you need to implement, one
for functions and one for variables and over-ride a single method to load it all.

Modules
A module the basic “encapsulated unit of execution” in QDL. That means that it has its own state and
when you execute functions from a module, they execute there. All modules have a URI that identifies
them uniquely and a human-readable alias that may be changed to suit the current user needs. Modules
may not be nested in the sense that you cannot create a new one inside of one, but you can import them
and use them.

Modules are also factories
There is a function you must override in a module called

public Module newInstance(State state);

This will be called whenever you need to create a new instance. Points to remember are

• create all QFLFunctions and QDLVariables here. Add them to the module

• If the state is not null, call init on your new module.

Here is an example (taken from the supplied toolkit) for such a method. The module, named MyModule
is created

public class MyModule extends JavaModule{
 @Override
 public Module newInstance(State state) {
 MyModule myModule = new MyModule(URI.create("qdl:/examples/java"), "java");
 ArrayList<QDLFunction> funcs = new ArrayList<>();
 funcs.add(new Concat());
 myModule.addFunctions(funcs);

 ArrayList<QDLVariable> vars = new ArrayList<>();
 vars.add(new EGStem());
 myModule.addVariables(vars);
 if(state != null){
 myModule.init(state);
 }

 return myModule;
 }

}

The head scratcher here is why is this class creating a new instance of itself? Because this allows the
module to produce copies of itself (could have had some sort of a clone() method instead too, but we
don’t mostly to avoid running afoul of the contract for that method in the future.) This method will be
called whenever anyone import s this module with a different alias, allowing for multiple instances of
this module.

Functions
Functions must implement the edu.uiuc.ncsa.qdl.extensions.QDLFunction interface. This has a few
methods (refer to the Java documentation). The basic way it works is that you tell how many arguments
this may accept and when called, you will be given an array of objects which you must use. Note that in
order to keep them straight you should specify in the function documentation what you expect the user
to supply.

Evaluating functions
The basic signature of a QDLFunction is

public Object evaluate(Object[] objects, State state);

In which an array of objects is passed as is the current state. Note that the objects are either constants or
function references. You must check what the types are.

Example. Evaluating a function as an argument

You may pass function function references or lambdas. These are pre-processed and arrive as function
reference nodes. To evaluate them, turn the reference into an Expression. For instance, let us say that
you had a function whose signature (in QDL) is

f_ref(@f, x)

which is to evaluate f(x) and return the result. The zero-th aregument is therefore a function reference
and the 1st argument is passed. You would write something like:

import static edu.uiuc.ncsa.qdl.evaluate.AbstractFunctionEvaluator.getOperator;

// .. other stuff in the class

@Override
public Object evaluate(Object[] objects, State state) {
 ExpressionImpl expression =
 getOperator(
 state, // current state
 (FunctionReferenceNode) objects[0], // cast as needed

https://cilogon.github.io/qdl/apidocs/index.html

 1); // valence. Here the 0th arg is monadic.
 expression.getArguments().add(new ConstantNode(objects[1])); // Set the arguments
 return expression.evaluate(state); // run it and return.
}

so in QDL you could easily invoke this as

 f_ref(@cos, pi()/7)
0.900968867902419

Note that we cannot simply hand back the expression, just the function reference node. The reason for
this is the getOperator function, which looks up the function based on the number of arguments it
has. Since there is no way to tell ahead of time what the arguments are, you must resolve this.

Nota Bene: This exact example is included in the sample function

 edu.uiuc.ncsa.qdl.extensions.example.FunctionReferenceExample

Variables
Variables implement the edu.uiuc.ncsa.qdl.extensions.QDLVariable interface. This has two methods,
one for the name and one for the value (as an Object). These are evaluated at load time and the value in
the workspace is set.

Intrinsic variables and functions
In standard QDL there is a privacy mechanism for making the state of a module immutable. In Java-
based- modules, however, everything is private unless explicitly revealed to the user, so there usually is
no reason to define intrinsic items. Said more plainly, in a Java module everything is intrinsic unless
you expose it.

Exposing the methods of a class as a function
A common construction is to have the module effectively be a single encapsulated class and the
functions in it expose the underlying Java methods. In order to achieve this, you should have the class
implement the marker interface edu.uiuc.ncsa.qdl.extensions.QDLModuleMetaClass and then each
QDLFunction will be a non-static inner class. Since non-static inner classes have access to the state of
the enclosing class, this makes much coding quite easy. E.g.

public class MyClass implements QDLModuleMetaClass{
 // whatever you need to make MyClass work. To expose the methods to QDL:
 public class MyQDLFunc implements QDLFunction{
 @Override
 public String getName(){
 return “my_func”;
 // ...all of the other implementations

 } // end myQDLFunc

} // end MyClass

This should implement the Serializable interface. The way QDL saves its state is via Java serialization
(if we did not, you would have to write your own serialization/de-serialization mechanism for any
extension you write.) See the note below for a fuller explanation of this.

This example then creates a function named my_func that QDL can use.

When you are loading this, you need to instantiate the class from the parent like this:

MyClass mc = new MyClass();
MyQDLFunc myFunc = mc.new MyQDLFunc();

Alternately you could have a each QDL function as its own class and a set of them could share a single
instance of the class. This can be done in the QDLLoader for the module.

Synopsis

• JavaModule is the java analog of the definition module[. . .]. It has the variables, functions and
documentation.

• QDLModuleMetaClass is an actual implementing class. Each variable or function is an inner class
of this class. You don’t need to set your module up as inner classes.

• QDLLoader is the class that module_load calls. Since this is user-facing, a good name is in order.

Are modules classes?
No. Not quite. They are encapsulated units. The difference is that a class you can pass around with a
reference, modules you cannot (though you can pass along anything inside one.) Also, in QDL there is
no inheritance of modules.

Exceptions
You should just throw regular Java exceptions as needed (e.g. IllegalStateException) and never throw a
QDLException or its subclasses. The reason is that QDLException contains information about the
internal workings of QDL (such as line numbers and parsing information) and is intended to be used by
QDL to give a report on the issue. If you throw one, then you may get some very strange errors as the
system tries to figure out the error. In short for QDLException there are “no user serviceable parts.”

Serializability

Java Serialization Guidelines

Make sure that java serialization is handled right for any modules you create. The way that new
instances of classes are done for you on the fly are via serialization (they are serialized then every new

instance of the module is deserialized as its own instance.) This means that things (like loggers) that
should not be serialized should be marked transient. For the vast majority of implementations, you
don’t really need to do anything.

Saving workspaces with serialization

QDL can save its workspace using Java serialization. For certain types of complex state where you do
not want to write the XML serialization code, this can work and this was chosen because otherwise
every additional module needs to have a serialization mechanism designed and implemented – which
can be a tremendous amount of work. If a module you wrote is not serializable, then you cannot save a
workspace that references it. Do not forget that changes to your class may make it impossible to
deserialize a workspace later, so you really must handle the serialization right if you intend to save your
work this way. The best way to test this is at some point when you are testing your module inside a
QDL workspace is just try to save the workspace and see what messages are produced.

There are any number of criticisms of Java’s serialization mechanism and most of these boil down to
the fact that it was never intended to be used in web traffic, so if it is possible to intercept a serialized
object, then malicious code can be injected that will be executed on deserialization. As long as it is used
for local operations or storage only (exactly what QDL does with it) it is a fine thing. You should,
however, consider uses that send serialized objects over the network (standard fix is to require an SSL
connection for all network traffic), but that is far outside the scope of what we are doing here.

XML Serialization Guidelines

To support serialization to XML (which you should do really), you need to override the following as
needed.

• readExtraXMLAttributes read the additional attributes to the module tag

• writeExtraXMLAttributes write attributes to the module tag

• readExtraXMLElements read custom elements inside the module element

• writeExtraXMLElements write custom elements inside the module element.

Please read the javadoc for these methods. Also, always call super! These also allow you to create
instances of things or read configuration you stashed and re-initialize your objects. The aim is that if a
user serializes their workspace, deserializing it gives back a fully functional set of objects.

State

The State object from QDL will be injected at runtime and each function will have the state at that
instant injected into it in the evaluate method. This means that the state object should not be part of the
enclosing class, but processed in the evaluate method where it is passed. Do not try to store State
objects.

https://cilogon.github.io/qdl/apidocs/edu/uiuc/ncsa/qdl/state/State.html

	Introduction
	Modules
	Modules are also factories

	Functions
	Evaluating functions

	Variables
	Intrinsic variables and functions
	Exposing the methods of a class as a function
	Are modules classes?
	Exceptions
	Serializability
	Java Serialization Guidelines
	XML Serialization Guidelines
	State

