
Writing an Extension in Java

Introduction
QDL has its own system for writing modules, but some times you need to add functionality that is not
in the base system. You may write your own custom Java code and import it. It will function like any
other QDL module. It is really quite simple. There are two interfaces the you need to implement, one
for functions and one for variables and over-ride a single method to load it all.

Modules
A module the basic “encapsulated unit of execution” in QDL, and it has namespace qualification too.
That means that it has its own state and when you execute functions from a module, they execute there.
All modules have a URI (namespace) that identifies them uniquely.

Anatomy of the module definition
Consider the following QDL module definition:

module[namespace]
 body[
 === comments...
 functions and variables…
];

The corresponding Java classes that model this are:

JavaModule (class) corresponds to the module[..] statement and === comments. It is also charged
with creating new copies of the module when the import function is called.

QDLMetaModule (interface) corresponds to the contents of the body. This has two (optional) methods if
you need to save state on workspace saves. See section below. As a mater of fact, if you are not saving
state, you don’t even need to implement this.

QDLLoader (class) corresponds to hitting enter in the workspace which causes the module to be
interpreted or, if this is in a file, issuing a load command (which parses the statement, sets up state
&c.).

QDLFunction (interface) a QDL function

QDLVariable (interface) a QDL variable.

Lifecycle of a module
A module is loaded , which makes the workspace aware of it, then imported as needed. Importing a
module means essentially making a working copy, aka an instance of it. This is typically assigned to a

https://qdl-lang.org/apidocs/org/qdl_lang/extensions/JavaModule.html
https://qdl-lang.org/apidocs/org/qdl_lang/extensions/QDLVariable.html
https://qdl-lang.org/apidocs/org/qdl_lang/extensions/QDLFunction.html
https://qdl-lang.org/apidocs/org/qdl_lang/extensions/QDLLoader.html
https://qdl-lang.org/apidocs/org/qdl_lang/extensions/QDLMetaModule.html

a variable which is then referenced. Modules instances need not be unloaded, simply delete the variable
that refers to it. If you unload a module, then it is completely expunged from the workspace and you
cannot import it any more. This means from the perspective of writing an extension that you need the
actual module and a loader.

How the java classes are used. Note that we are being pedantic when we say that an instance of
JavaModule is returned, this means (since it is an abstract class) an extension of it. An “instance of”
literally means the Java instanceof would return true,

load is called

• QDLLoader.load is executed, returning at least one instance of JavaModule.

• JavaModule.newInstance is called with a null State object. This creates a template or shell of
the module which is then used to create stateful copies. It is at this point that the function and
variable implementations are processed.

import is called

The existing template is retrieved and its newInstance with a clean state object is called.. Your
implementation should detect a non-null state object and call the Javamodule.init method. The
action of the init method is to populate the state object with any variables, functions (possible other
modules too) and hand back a fully functional module instance.

System State object vs. class state
The system has a State object which contains all of the current variables, etc. for the workspace. Each
module has its own local state object with just the module’s values. On import, it is populated with your
functions and variables by the JavaModule.init function. The system state mutates rapidly under use,
and hence each call to your function it is passed in. You can retrieve values from the workspace or set
them as needed, though generally that is a special case. Moreover, when the workspace is saved, this
state object is pickled as needed, so you don’t really have to do anything. While you can certainly
manipulate the state object in your class, generally you won’t need to.

Java classes have their own state (defined as the values of the class variables, etc.) which may be need
to be persistent. There is a mechanism for this in the QDLMetaModule interface. That has two methods
for pickling (aka serializing) and unpickling. A full example is below. In summary, you design and
create a JSON object which is then automatically managed for you.

Example code
There are two complete examples in the source code. These may be loaded at any time and the source
code is available too. There are two examples.

https://github.com/ncsa/qdl/tree/main/language/src/main/java/org/qdl_lang/extensions/examples
https://github.com/ncsa/qdl/tree/main/language/src/main/java/org/qdl_lang/extensions/examples
https://qdl-lang.org/apidocs/org/qdl_lang/extensions/QDLMetaModule.html
https://qdl-lang.org/apidocs/org/qdl_lang/state/State.html

The basic example.
This is in the package org.qdl_lang.extensions.examples.basic. This shows how to make a
module whose implementing functions and variables are independent of each other – so no shared Java
state. It consists of a loader, module class and a separate class for each function and variable. Since it
is an example, it shows how to create an extrinsic variable and function and the lifecycle of that.

Included classes

Here is a table of the classes by way of summary.

Class Extends In WS Description

EGLoader QDLLoader -- The loader for this module.

EGModule JavaModule The module The module class

ConcatFunction QDLFunction concat(x,y) Simple concatenation function

ExtrinsicFunction QDLFunction $$identity(x) Function whose name starts with $$

ExtrinsicVar QDLVariable $$EG Variable whose name starts with $$

FEvalFunction QDLFunction f_eval(@f,x) Example of a function that takes a function
reference and how to resolve that and execute
the function

StemVar QDLVariable eg. A stem of various values so you can see how to
set them

StemEntryVar QDLVariable a.5 A single entry of a stem, showing fine-grained
control.

The extrinsic objects are simply that by virtual of the naming convention that they start with a $$ in
their name. When the system detects this on load, it will add them to the workspace. Since you don not
need to import the module to have access, you can put bootstrapping values in them, for instance.

Sample use

This is to illustrate how this works. The examples are included in the base distro so you can always do
this

 X := j_load('tools.eg.basic')
)funcs X
concat([2]) f_eval([2])
2 total functions
)vars X
a. eg.
 X#a.
{5:test value}
 X#f_eval(@cos, pi()/3)
0.500000000000002

This shows how to invoke a couple of sample functions. Don’t forget there is help availble too!

)help X#f_eval 2
f_eval(@f, x) - simple basic that evaluates f at x using a function reference.
E.g.
 eg#f_eval(@cos, pi()/7)
0.900968867902419

This is the same as issuing cos(pi()/7)

Sample showing how extrinsics work

In this case, we just load the module and check that the extrinsics are availble.

 load(info().lib.tools.eg.basic, 'java')
ex:eg
)vars -extrinsic
$$EG
)funcs -extrinsic
$$echo([1])
1 total functions
 // Show that the function, which just echos the input, works.
 $$echo('mairzy doats and does eat stoats')
mairzy doats and does eat stoats

One of the basic problems with writing complex systems if the “bootstrapping” problem, meaning how
to initialize and configure the system. If a module needs information specific to its import, then an
extrinsic variable or function allows a way to do this. You do not need to include these ever, but the
example is included since it would otherwise not be clear how to solve a bootstrapping issue. This is
the Java analog of the standard construct in a module file of setting any extrinsics in the header before
the module. So if this example were written as a QDL module the file would start as follows:

// extrinsic variables
$$echo(x)→x;
$$EG := 42;
module['ex:eg']
// … rest of module definition

The stateful example
This is in the package org.qdl_lang.extensions.examples.stateful and consists of a loader,
module class and implementation class. The implementation contains the function and variables as
subclasses. These share Java state and show the serialization mechanism.

Included classes

Class Extends In WS Description

StatefulExample QDLMetaModule Implementation class

 GetS QDLFunction get_string() Inner class, sets a class variable

 ImportTimestamp QDLVariable import_ts Inner class, with the timestamp the
module was imported

 SetS QDLFunction set_string(x) Inner class, gets the class variable,

StatefulLoader QDLLoader -- Loads the module

StatefulModule JavaModule The module The module itself.

Example of using it.

Again, this module is included in the standard distribution, so you can load it and explore it as follows:

 Y := j_load('tools.eg.stateful')
 Y#set_string('Baby shark do-do-do-do-do-do')
null
 Y#get_string()
Baby shark do-do-do-do-do-do

The contract is that set_string returns the previous value. In this case, the previous value was unset, so
it is null.

Saving and restoring

In this case, the module as a Java class has an internal variable. We first show the user experience since
this is what we want. From the previous point, we save it.

)save /tmp/temp.ws
saved: '/tmp/temp.ws'
 on: Sun Sep 08 07:41:34 CDT 2024
 compressed size: 1066
 elapsed time: 0.019 sec.
)off y
system exit

Now we restart QDL and load the workspace:

$temp>qdl
)load /tmp/temp.ws
)vars
Y
 Y#get_string()
Baby shark do-do-do-do-do-do

Showing that the module was serialized by the system and on loading it, the state of the Java class was
restored automatically.

Java class reference
Each of the above classes or interfaces is discussed here in detail. There are two basic ways to approach
writing the functions and variables. The first if they are all independent, simply have them as separate

classes and add them to the module in your JavaModule extension. The second is to have them as inner
classes of a meta class, where they can all share state. QDL provides an interface for this case,
QDLMetaModule

QDLMetaModule
This interface is used if you have an enclosing class for all of your functions and variables that
typically share some state. It has two methods that allow you to store your state on workspace save, so
you may persist it.

JSONObject serializeToJSON();

void deserializeFromJSON(JSONObject json);

Example

These are taken from the HTTP implementation for QDL. That module tracks the host (the internet
address the module is talking to) and the headers to be used.

@Override
public JSONObject serializeToJSON() {
 JSONObject json = new JSONObject();
 if (!StringUtils.isTrivial(host)) {
 json.put("host", host);
 }
 if (headers != null) {
 json.put("headers", headers);
 }
 return json;
}

@Override
public void deserializeFromJSON(JSONObject json) {
 if (json.containsKey("host")) {
 host = json.getString("host");
 }
 if (json.containsKey("headers")) {
 headers = json.getJSONObject("headers");
 }
}

The essential point is that the JSON object can be anything you like, since it is simply returned to you
and then you unpack it. It would also be possible to have some other re-initializatio method(s) called in
the deserializeFromJSON method.

JavaModule
This is the class that QDL thinks of as being the module. You extend this class and the only four
methods that are required to override are

the no argument and URI argument constructors, which should call their respective super and

public Module newInstance(State state)

which will create a new instance of this module. If you want to supply a description for the module that
can be displayed after loading the module, override

public List<String> getDescription()

The newInstance method

There is a method you must override in a module called

public Module newInstance(State state);

This will be called whenever import is called on your module, i.e., to create a new instance. Points to
remember are

1. create all QFLFunctions and QDLVariables here. Add them to the module

2. Call init(State) as well as setupModule(Module) on your new module. This sets up the by
creating the actual functions, variables and find it. If you do not call this, your module will not
function once imported.

3. If your implementation of the module is QDLMetaModule, you must set that to enable
serialization of the state.

Here is an annotated example. This is for the case that the implementing class is a QDLMetaModule

Java Exegesis
public class MyModule extends JavaModule{

 public MyModule(){} required
 public MyModule(URI namespace){super(namespace);} required

@Override

 public Module newInstance(State state) {

 MyModule myModule =
 new MyModule(URI.create("qdl:/examples/java"));

This sets the namespace of the module

 MyImpl myImpl = new MyImpl(); In this case, the functions and variables
of the class are inner classes of MyImpl

 myModule.setMetaClass(myImpl); Set the instance of myImpl to be the
meta module of this instance.

 // Now add functions

 List<QDLFunction> funcs = new ArrayList<>();

 funcs.add(myImpl.new MyFunc()); Remember this instantiates an inner
class named MyFunc

 myModule.addFunctions(funcs);

// Add variables

 List<QDLVariable> vars = new ArrayList();

 vars.add(myImpl.new MyVar());

 myModule.addVariables(vars);

 myModule.init(state); // adds the functions etc. to the state
 setupModule(myModule); // finishes accounting
 return myModule;

 }

} //end class

The getDescription method

The method with signature:

public List<String> getDescription();

is optional in the sense that if you do not implement it, nothing is wrong. Its function is to give the
module-level description that the user can peruse. This is available right after loading the module. So
for instance

)help ex:stateful
 module name : StatefulModule
 namespace : ex:stateful
default alias : null
 java class : org.qdl_lang.extensions.examples.stateful.StatefulModule
A stateful module example. This is intended for programmers who
are learning how to write their own QDL modules in Java. It shows
how to create an implementation class the contains inner classes which
are the functions and variables for the modules. The assumption is that
all of there share some state in the Java class (which is a priori unknown
to QDL) and must be serialized.
See the documentation https://qdl-lang.org/pdf/qdl_extensions.pdf
functions:
 get_string() - get the current string value.
variables:
 import_ts

The list of strings (here in italics) is inserted in the middle of the generated module description, here in
italics. The rest of this description is from introspection on the module.

QDLLoader
This class is charged with telling the system what the modules are. Now there is an issue with the
number of modules to return. Generally a loader returns a single class, since if you call it with the load
function, that is unambiguous. However, it is also sometimes useful to return several loaders at once, if
for instance you are intending that they be in the QDL configuration file and you want them just loaded
but not somehow imported.

Complete example from the toolkit

The stateful example has this as the entire implementation:

public class StatefulLoader implements QDLLoader {
 @Override
 public List<Module> load() {
 ArrayList<Module> modules = new ArrayList<>();
 modules.add(new StatefulModule().newInstance(null));
 return modules;
 }
}

The QDLFunction interface
Functions must implement the org.qdl_lang.extensions.QDLFunction interface. This has a few
methods (refer to the Java documentation). The basic way it works is that you tell how many arguments
this may accept and when called, you will be given an array of objects which you must use. Note that in
order to keep them straight you should specify in the function documentation what you expect the user
to supply. You may name the class anything you like.

The getName method

public String getName();

This returns the name of the function. This is the name the QDL user sees.

The getArgCount method

public int[] getArgCount();

This returns an array of integers for the number of arguments the function accepts. Any non-neative
argument may be used. The system will invoke your function when it encounters a call with one of
these as the argument count.

The getDocumentation method

When the user involes)help function_name arg_count help is displayed. This isread directly from this
method and printed. Remember that in many cases the system will take only the first line of the help
and display it as a short form, so it is always a good idea to have the first line be concise.

List<String> getDocumentation(int argCount);

https://qdl-lang.org/apidocs/index.html

The evaluate method
The workhorse method of QDLFunction is

public Object evaluate(Object[] objects, State state);

In which an array of objects is passed as is the current state. Note that the objects are either constants or
function references. You must check what the types are.

Example. A complete QDLFunction implementation

Here is one from the toolkit. It is very simple but shows all the parts.

public class ConcatFunction implements QDLFunction {
 @Override
 public String getName() {
 return "concat";
 }

 @Override
 public int[] getArgCount() {
 return new int[]{2};
 }

 @Override
 public Object evaluate(Object[] objects, State state) {
 return objects[0].toString() + objects[1]; // call toString so it compiles. Can't add
objects
 }

 @Override
 public List<String> getDocumentation(int argCount) {
 ArrayList<String> docs = new ArrayList<>();
 docs.add(getName() + "(string, string) will concatenate the two arguments");
 docs.add("This is identical in function to the built in '+' operator for two
arguments. It is just part of the");
 docs.add("sample kit for writing a java extension to QDL that is shipped with the
standard distro.");
 return docs;
 }
}

Of particular note is that the arg count is restricted to 2 arguments, This means that if the user attempts
to call it with the wrong number, an error is generated.

 eg#concat(‘foo’)
undefine function concat with one argument

QDLVariable interface
This has two methods:

The getName method

Returns the name of the variable. Note that for stems, you may include (constant) indices, allowing you
to set individual elements of a stem.

String getName();

The getValue method

This is the value that will be assigned to the variable. Note that it must be or contain only QDL data
types as per the table above. This is computed on module load and will not be updated, so it sets the
initial value of the variable.

Object getValue();

An example

Here is a complete example that returns a set

public class MySet implements QDLVariable{
 @Override
 public String getName() {
 return "my_set";
 }

 @Override
 public Object getValue() {
 QDLSet set = new QDLSet();
 set.add(new BigDecimal("-34.234443"));
 set.add(42L);
 set.add("Sphinx of Black Quartz, Judge My Vow");
 return set;
 }
}

In this case, a set named my_set will be in a variable in the module.

Do you really need to create variables this way?

Strictly speaking, you do not. In the newInstance call for the module, you could just manually set
variables in the state, providing it is not null, so the above example could be done as

 public Module newInstance(State state) {
 // .. other required stuff
 if(state != null){
 QDLSet set = new QDLSet();
 set.add(new BigDecimal("-34.234443"));
 set.add(42L);
 set.add("Sphinx of Black Quartz, Judge My Vow");
 state.setValue('my_set', set);
 }
 // rock on!
} // end of newInstance method

If you have a lot of variables to set, this might be a better option. However, if you are setting extrinsic
variables, this works quite differently, so it is far easier to have a QDLVariable to define that.

Other topics

Allowed QDL data types vs. Java
These are the citizens of the module and are what the user interacts with. Each is just an interface to be
implemented. The main method for each returns a value and the value must conform to a QDL type as
per this table

QDL Java Comment

null QDLNull.getInstance() There is exactly one QDL null in the universe. Use
it.

boolean Boolean There are two Boolean values.

integer Long The java object is used and all integer in QDL are
64 bit

decimal BigDecimal Other type such as double, float, etc. will reliably
cause errors

stem QDLStem This include lists, which are special cases of stems.

set QDLSet All elements must be QDL variable types.

string String

Variables may be these or contain these, e.g. a stem of integers (aka Java Longs).

Intrinsic variables and functions
In standard QDL there is a privacy mechanism for making the state of a module immutable. In Java-
based- modules, however, everything is private (as far as QDL can tell) unless explicitly revealed to the
user, so there usually is no reason to define intrinsic items. Said more plainly, in a Java module
everything is intrinsic unless you expose it.

Extrinsic variables and functions
Extrinsic functions an variables by convention start with a $$. If you create a variable with that name,
then on load that becomes part of the current workspace. This is quite useful, since you can put bits of
state, constants needed for bootstrapping etc. there and have it available before loading the module
proper.

What if you really need this module to be a singleton? Then this is a style issue. You have it set as an
extrinsic variable, e.g.,

 $$connection_pool := import(connection_pool);

which makes it available to every module and function in the workspace as soon as it is set. The point
is that it is a lot easier to do this than have the module itself setup an extrinisic module on load since
there is a bootstrapping issue (the module has to already exist in the workspace to set itself to be an
extrinsic reference.)

Are modules classes?
No, in QDL there is no inheritance of modules. The is the namespace mechanism and encapsulation
though.

Exceptions
You should just either BadArgException when checking arguments or otherwise throw regular Java
exceptions as needed (e.g. IllegalStateException).

Example of how to use BadArgException(String, int) in practice

A typical example is checking for arguments at the start of a method. Here, the assumption is that
object[1] must be a stem:

public Object evaluate(Object[] objects, State state) {
 if (!(objects[0] instanceof QDLStem)) {
 throw new BadArgException("The first argument of " +
 getName() + " must be a stem", 0);
 }
 QDLStem leftArg = (QDLStem) objects[0];
// … rest of method
}

Throwing BadArgException in this case means you pass in a message and the index of the bad
argument. This is caught be the system and all of the information for the stack trace is filled in for you
(since passing all pending state from everything calling this method in to the function would be very
messy, hence it is done for you). This lets you get a tidy stack trace with the correct line numbers. Note
there are several constructors for BadArgException, only use

BadArgException(String message, int argNumber);

Note: Aside from BadArgException never throw a QDLException or its subclasses. The reason is that
QDLException contains information about the internal workings of QDL (such as line numbers and
parsing information) and is intended to be used by QDL to give a report on the issue. If you throw one,
then you may get some very strange errors as the system tries to figure out the error. In short for a
general QDLException there are “no user serviceable parts.”

https://qdl-lang.org/apidocs/org/qdl_lang/exceptions/QDLException.html

Java Serialization Guidelines
QDL can save its workspace using Java serialization. For certain types of complex state this can save
resources (e.g. you have a million high precisions numbers in a stem). Modules are automatically
serializable, but be sure that any classes you write implement the Serializable interface. If a module
you wrote is not serializable, then you cannot save a workspace that references it. Do not forget that
changes to your class may make it impossible to deserialize a workspace later, so you really must
handle the serialization right if you intend to save your work this way. The best way to test this is at
some point when you are testing your module inside a QDL workspace is just try to save the workspace
and see what messages are produced.

There are any number of criticisms of Java’s serialization mechanism and most of these boil down to
the fact that it was never intended to be used in web traffic, so if it is possible to intercept a serialized
object, then malicious code can be injected that will be executed on deserialization. As long as it is used
for local operations or storage only (exactly what QDL does with it) it is a fine thing. You should,
however, consider uses that sending serialized objects over the network (standard fix is to require an
SSL connection for all network traffic), is strongly discouraged, but that is far outside the scope of what
we are doing here.

	Introduction
	Modules
	Anatomy of the module definition
	Lifecycle of a module
	load is called
	import is called

	System State object vs. class state

	Example code
	The basic example.
	Included classes
	Sample use
	Sample showing how extrinsics work

	The stateful example
	Included classes
	Example of using it.

	Java class reference
	QDLMetaModule
	JavaModule
	The newInstance method
	The getDescription method

	QDLLoader
	Complete example from the toolkit

	The QDLFunction interface
	The getName method
	The getArgCount method
	The getDocumentation method
	The evaluate method

	QDLVariable interface
	The getName method
	The getValue method
	Do you really need to create variables this way?

	Other topics
	Allowed QDL data types vs. Java
	Intrinsic variables and functions
	Extrinsic variables and functions
	Are modules classes?
	Exceptions
	Java Serialization Guidelines

