
The QDL Configuration File
Version 1.4

Configuration File Basics
The basic format of the file is

<config>
 <qdl name=”X”>
 <!-- stuff →
 </qdl>
 <qdl name=”Y”>
 <!-- stuff →
 </qdl>
 <!-- more configurations -->
</config>

Each file consists of qdl elements which are named. Names are just strings and can be anything you
like as long as they are unique within the file. There may be many of these and you use them by
invoking the name. So here would be a typical user-defined

java -jar qdl.jar -cfg /path/to/file/cfg.xml -name X

So the path to the above file is /path/to/file/cfg.xml and inside the file, the qdl tag with name X is to be
used. You may have many configurations in a file for different needs and just invoke them.

Aliases.
You may also make several configurations then refer them using aliases:

<config>
 <qdl name=”default” alias=”test-mysql-5.4.3”/>
 <qdl name=”test-mysql-5.4.3”>
 <!-- stuff →
 </qdl>
 <qdl name=”test-mysql-6.0”>
 <!-- stuff →
 </qdl>
 <!-- more configurations -->
</config>

In this case, there is an alias for the configuration named test-mysql-5.4.3 and you would simply
use the name “default” when referencing it. Later, if you needed to change the configuration to test-
mysql-6.0 you would just change the alias. The idea is that you can set your configuration files (which
may be awkward to do on a server, e.g. especially if this is called by a complex set of startup scripts)
and then make changes in the configuration file

Aliases are transitive in that you can have them refer to other aliases like

<config>
 <qdl name=”A” alias=”B”/>
 <qdl name=”B” alias=”C”/>
 <qdl name=”C” …

Thus invoking “A” would resolve to “C”. If there were a cycle, an exception would be thrown.

File imports
You may also import another configuration file.

<config>
 <file include="/path/to/server-cfg.xml"/>
 <qdl name=”A” alias=”B”/>
 <!-- stuff→>
</config>

In this case, all of the configurations in the indicated file are loaded and may be referred to henceforth
as if they were part of the current file. A typical use might be

<config>
 <file include="/path/to/server-cfg-ver1.xml"/>
 <file include="/path/to/server-cfg-ver2.xml"/>
 <file include="/path/to/server-cfg-ver3.xml"/>
 <qdl name=”default-version-1” alias=”version-1.1”/>
 <qdl name=”default-version-2” alias=”version-2.5.4”/>
 <qdl name=”default-version-3” alias=”version-3.0.0-alpha”/>
</config>

In this case, each version in question has its own set of configurations and a default from each is set.
This allows for management of extremely complex server installs. Then again, you might not need any
of it.

A complete example
This is a typical bare-bones workspace configuration’

<config>
 <qdl name="minimal">
 <workspace verbose="true"
 echoModeOn="true">
 <home_dir>/home/your_name/dev/qdl</home_dir>
 <env>etc/qdl.properties</env>
 </workspace>
 </qdl>
</config>

Assuming that this resides in the file /path/to/cfg.xml, you could invoke the interpreter using this:

java -jar qdl.jar -cfg /path/to/cfg.xml -name minimal

A server example.
This is a typical configuration from a server.

 <qdl name="qdl-default"
 enabled="true"
 debug="info"
 strict_acls = "false"
 server_mode=”true”
 restricted_io = "false"

 script_path="vfs#/scripts/">
 <virtual_file_systems>
 <vfs type="pass_through"
 access="r">
 <root_dir>/var/www/storage/qdl/scripts</root_dir>
 <scheme><![CDATA[vfs]]></scheme>
 <mount_point>/scripts</mount_point>
 </vfs>
 </virtual_file_systems>
 <modules>
 <module type="java"
 import_on_start="true">
 <class_name>
 <![CDATA[edu.uiuc.ncsa.myproxy.oa4mp.qdl.OA2QDLLoader]]>
 </class_name>
 </module>
 </modules>
 </qdl>

In this case, the server mode is active and a read-only scripts directory has been mounted as a VFS. A
set of tools is loaded as well. What this means is that inside the server that accesses this, the VFS and
tools (which are auto imported) are available to each script that is loaded. The script path is set to the
VFS, so that, e.g., all path references inside the script can be relative.

The Configuration Reference
Each section corresponds to an entry in the configuration file.

config
This is the outermost tag and includes at least one qdl tag. This is so all of the qdl configuration can be
kept separate in case there are other types of configuration in the file. It has neither attributes nor any
other possible entry than qdl elements.

qdl

Attributes

Name Req
?

Default Description

assertions_on N true Enabled or disable assertions. If disabled, no assertions will be
processed, effectively ignoring them.

debug N off Enable debug mode level. These are off, trace, info, warn,
error and severe. If you enable this then the debug() function
will print debug messages to the console. This is useful in
cases of, e.g., server side scripting where debug messages are
usually captured and sent someplace like the syslog. generally
debugging is done in QDL using the say() command. There is
also the log() command that writes to the currently active log.

enabled N true This enables/disables this configuration, so it will/will not be
loaded.

name Y - (required) The unique identifier for this configuration. It can
be any string as long as the it is unique in this file.

numeric_digits N 15 The default precision for decimals

restricted_io N false Even if server_mode is enabled, printing (for debugging
purposes) and logging are allowed. Setting this true turns them
off completely.

server_mode N false Server mode means this is running as part of a server, usually
as a scripting language. This turns off things like file
operations, prompting and other features. It is only needed in a
specific context.

script_path N - A colon separated list of paths (including virtual file system
paths) to be searched for scripts. This effects the script_run and
script_load commands.

module_path N - A colon separated list of paths (including virtual file system
paths) to be searched for modules. This effects the
module_load.

lib_path N - Used in conjunction with enable_library_support. This is the
path that will be used to search for scripts.

enable_library_support N F Enable using the lib_path to search for scripts as functions.

Note about library support: There are a couple of ways of extending QDL. One of them is to define
your own functions in the workspace. Another is to write scripts and have these called seamlessly as if
they were functions. So if you wrote a script /path/to/my/script/my_script.qdl you could set the
lib_path to be /path/to/my/script and inside of QDL issuing something like

x:= my_script(arg0,arg1)

would find this in the libpath, load it and pass it the two arguments, i.e., it is identical to

x:= script_run(my_script(‘/path/to/my/script/my_script.qdl’, [arg0,arg1]));

Generally loading scripts this way is slow, however if you are using QDL as a general scripting
language in your operating system, this is a good way to make utilities available to it. Note that the

lib_path is not the same as the script_path. You can toggle this as a variable with the)ws set command
too.

boot_script
A script to run on startup, after virtual file systems and named external modules are loaded, but before
the system is available. This lets you e.g. do additional set up of the environment.

Logging

Attributes

Name Req? Default Description

disableLog4j N true Log 4 Java is a common utility. Unfortunately many projects
which QDL relies on use it and if they are misconfigured, then
you may get extremely strange messages about missing log4j
files or inscrutable output about things you’ve never heard of.
Setting this to true will hunt down all instances and terminate
them. Oh, and certain version s of Log 4 Java have an
enormous security problem.

logFileCount N 1 The total number of files to have in the rotation. If the count it
less than or equal to 1, then only a single log file is maintained.

logFileName N logging.xml The default file is deposited in the invocation directory. If the
entire path is given, that will be used. NOTE: the path must
exist or logging will fail to initialize. I.e., no paths are created.

logName N qdl The name prepended to each entry in the log file. This is
especially useful if several programs are running and share a
single location – a frequent occurrence on a server.

logSize N 0 The maximum size of the file before the system rolls it over. If
rotating files is enabled (by setting the logFileCount greater
than 1), then logs are rotated. Otherwise, the log file is simply
over-written

debug N false Enable sending trace level messages to the currently active log.

Example
 <logging logFileName="log/qdl.log"
 logName="qdl"
 logSize="100000"
 logFileCount="2"/>

This sets the relative file to home_dir/log/qdl.log, sets a maximum log size to 100,000 bytes (at
which point it will be rotated), Entries will be prefixed with the tag “qdl”. Finally, this will allow 2 such
files named qdl.log.0 and qdl.log,1 and will swap them out as needed. Look at the dates and timestamps
on the files if you need to see which the current one is.

editors
This section allows you to configure external text mode editors for use with QDL. Each has a name and
one may be active at once. The default is the line editor (named line) that works with all terminal types
and all versions of Java.

Inside the editors tag is a list of editor elements with the following properties

Name Req? Default Description

name Y - The human readable (nick)name you want to use for this.

exec Y - The path to the executable for this editor.

clear_screen N false See below.

It may also have (optional) argument elements with the form

Name Req? Default Description

flag Y - The flag for this argument

connector N - The connector arguments use

clear_value N false The value for this flag.

The clear_screen option needs some explanation. Most terminals support what is called private mode
which allows a text mode application to pop over to full screen and back. Both nano and vim do this.
However, this sometimes does not work (this is an implementation issue with the terminal or perhaps
the terminal type does not support it right), so when you exit the editor, garbage is still on the screen.
This will issue a standard (as in ISO 6429) call to the terminal to clear it. Not great but at least you get
your screen back without a bunch of garbage the editor left. Sorry, but its the best we can do in the
general case.

Example
 <editors>
 <editor name="nano"
 exec="/bin/nano"
 clear_screen="false"/>
 <editor name="vim"
 exec="/usr/bin/vim"/>
<editor name="myedit"
 exec="/home/jeff/apps/java/myedit/myedit">
 <arg flag="-Dsyntax" connector="=" value="/home/jeff/conf/qdl.xml"/>
 </editor>
 </editor>
 </editors>

In this case, there are three editors (the active one can be set either in the workspace section of this
configuration of in the active workspace itself.) The first is the nano editor, the second is vim. The last
is called myedit and requires a command line option, so it would be invoked with

/home/jeff/apps/java/myedit/myedit -Dsyntax=/home/jeff/conf/qdl.xml

virtual_file_systems
This tag has no attributes but server to hold all of the vfs elements. QDL fully supports adding virtual
files systems with functions, but it is often easier to have a set of fixed mountes file systems that just
come up automatically in the workspace every time.

vfs
This is an entry for a virtual file system. All virtual file systems have the following attributes and
entries in common:

Attributes

Name Req? Default Description

type Y false The type of file system. This refers to the implementation. See below

access N r The permissions for this file system. “r” refers to readable and “w” to
writeable, so to have read and write access, you need to set this to
“rw”.

Supported virtual file system types

The supported types are

• pass_through – passes through to the underlying file system.

• memory – only in memory

• mysql – backed by a mysql database

• zip – a mounted zip file. This is always read only, but allows you to treat the file as if it were
just another directory.

Each type has specific configuration parameters that are detailed below.

Scheme

This is a specific name for the virtual file system. All paths prefixed with it plus a “#” will refer to this.
There is no requirement that, e.g. all database VFS have the same scheme. Schemes are logical so you
can keep them straight.

mount_point

Where in the virtual file system you want this mounted. So if this is mounted at /A/B then all paths that
start with scheme#/A/B will be resolved in to this file system

Supported virtual file system types

The following are the specific configuration options for each type of file system.

pass_through
A pass-through virtual file system effectively treats a directory on the system as if it were its own
separate file system. Note that since in server mode there is not direct access to the underlying file
system (servers usually run with enhanced permissions, so letting a regular user be the administrator for
the system is a terrible idea), but a directory may be set aside and access only to that (read only access
too, if desired) may be granted. The only configuration parameter is the directory that is to server as the
root. A common use is to have a library of scripts on disk and add a passthrough in read-only mode to
it. Scripts can then be loaded (and managed easily by the admin) without granting any access
otherwise.

root_dir

The absolute path to the directory that is the root of this VFS.

Example
 <vfs type="pass_through"
 access="r">
 <root_dir>/home/ncsa/dev/qdl</root_dir>
 <scheme><![CDATA[qdl-vfs]]></scheme>
 <mount_point>/pt</mount_point>
 </vfs>

In this case, the directory /home/ncsa/dev/qdl is on the server and that will be mounted in the VFS
at /pt. The system is read-only. A note about the <![CDATA[]]> tag. This lets you put any text inside a
tag, so special characters and such are allowed. The reason that scheme and such are elements and not
just attributes is because attributes have to go in between double quotes and are very limited in the sorts
of characters they allow. Use as needed, though some people always use them.

memory
A file system that is wholly in memory. This always starts up completely empty and lasts for exactly
the duration that the system is running. It may be used for extremely fast in-memory only access of
files, for instance, it can be used to initially cache files from a slower source (such as downloading over
the web) and stashing them. This is effectively a ramdisk.

Example
 <vfs type="memory"
 access="rw">
 <scheme><![CDATA[qdl-vfs]]></scheme>
 <mount_point>/ramdisk</mount_point>
 </vfs>

In this case, a in-memory VFS will be created and mounted at /ramdisk.

mysql
This is for a VFS backed by a mysql database. This has a separate connection element whose attributes
are

Name Req? Default Description

username Y - The name of the user with permission to access this database

password Y - The password of the user

schema Y - The schema (name of the database) that the table resides in

tablename Y - The name of the table

parameters N - Additional connection parameters. These may or may not be
required and vary based on how the database system is
configured.

Example
 <vfs type="mysql"
 access="rw">
 <scheme><![CDATA[qdl-vfs]]></scheme>
 <mount_point>/mysql</mount_point>
 <mysql username="qdl-user"
 password="w00fw00f"
 schema="qdl"
 tablename="vfs_table"
 parameters="useJDBCCompliantTimezoneShift=true"/>
 </vfs>

In this example, the VFS is mounted at /mysql and the scheme is qdl-vfs.. The system is readable and
writeable. The connection parameters are also provided.

zip
This mounts a zip (compressed file, also includes java jar files). Due to the internal structure of such
files, they cannot be made writeable. (In point of fact, the entire file has to be recompressed and
rewritten with each update because zip files keep a table of things that have been compressed. This
means while we could make one writeable, the overhead and performance are truly miserable as an

active file system.) One use is to zip up a library of modules and scripts, then send mount it. This
allows for instance, configuring several systems with identical tools easily. There is one additional
parameter required:

zip_file

This is the absolute path to the zip file.

Example
 <vfs type="zip"
 access="r">
 <zip_file>/home/ncsa/dev/resources/vfs-test/vfs-test.zip
 </zip_file>
 <scheme><![CDATA[qdl-vfs]]></scheme>
 <mount_point>/zip</mount_point>
 </vfs>

In this case, the file located at /home/ncsa/dev/resources/vfs-test/vfs-test.zip will be
mounted in the VFS at /zip.

modules
This element simply holds module elements and has a single optional attribute

Name Req? Default Description

libLoader N - An implementation of the interface
edu.uiuc.ncsa.qdl.state.LibLoader. This adds an entry to the
info().lib.

If this attribute is omitted, then nothing is added. If you issue info().lib then you will get a listing of the
default tools. The contents are simple keys that can be fed to module_load as java modules. The
individual elements are the key and the fully qualified path (in Java) to the loader for the module.

E.g. Adding another library

Standard practice is to

 @print [info().lib]∀

{
 oa2: acl : edu.uiuc.ncsa.myproxy.oa4mp.qdl.acl.ACLoader
 claims : edu.uiuc.ncsa.myproxy.oa4mp.qdl.claims.ClaimsLoader
 client : edu.uiuc.ncsa.oa2.qdl.CLCLoader
 cm : edu.uiuc.ncsa.oa2.qdl.CMLoader
 description : OA4MP tools for ACLs, JWTs, claims as well as token handlers
 jwt : edu.uiuc.ncsa.myproxy.oa4mp.qdl.util.JWTLoader
 store : edu.uiuc.ncsa.oa2.qdl.storage.StoreAccessLoader,
 tools: cli : edu.uiuc.ncsa.qdl.extensions.inputLine.QDLCLIToolsLoader
 convert : edu.uiuc.ncsa.qdl.extensions.convert.QDLConvertLoader
 crypto : edu.uiuc.ncsa.qdl.extensions.crypto.CryptoLoader

 db : edu.uiuc.ncsa.qdl.extensions.database.QDLDBLoader
 description : System tools for http, conversions and other very useful things.
 http : edu.uiuc.ncsa.qdl.extensions.http.QDLHTTPLoader
}

And this is very easily used with the lib_load(lib_name, class_name) function in the extensions library.
E.g. to load the ACL module from the oa2 library issue

 lib_load(‘oa2’,’acl’)

Module
A module is an encapsulated unit of code. You may write them in QDL using the module[]body[]
construct or you can also write them in Java and import them.

Attributes

Name Req? Default Description

type Y - The type of the module. Options are java or qdl.

import_on_start N F Load this when the system starts. This means it will be instantly
available to the user. Otherwise it will have to wait for use until
the user calls the import function.

class_name

(Java only modules) the name of the module. This must have a no-argument constructor and conform to
the requirements for a java module.

path

(For native QDL modules only) the path to the file that contains a QDL module.

Example
 <modules>
 <module type="java"
 import_on_start="true">
 <class_name>edu.uiuc.ncsa.qdl.extensions.QDLLoaderImp</class_name>
 </module>
 <module type="qdl">
 <path>relative/path/module.qdl</path>
 </module>
 </modules>

In this case, two modules are loaded. The java module is imported but the qdl module is not.

workspace
This element corresponds to the workspace and its function (as opposed to configuring the interpreter.)

Attributes

Name Req? Default Description

autosaveInterval N 600000 The length of time between automatic saves of the workspace.
This may be given with no units (assumed to be milliseconds)
or may have either “ms” or “sec” appended.

autosaveMessagesOn N true Whether ot not to print out the regular save messages
whenever the workspace is autosaved.

AutosaveOn N false Enable the autosave feature for the workspace. You must
configure saves to work right

echoModeOn N true Enable echoing of all single lines. Effectively this means
when you enter a single line, any needed ; is added to the end
and if there is output, the result is displayed

verbose N false Be chatty during operation. This prints out extra information.

showBanner N true Show the banner at workspace startup. Only a minimal startup
message will be shown so you know the workspace started
normally.

logo N default Which logo to use. Options are roman, times, os2, fraktur,
small, default and none (which is the same as
showBanner=”false”).

prettyPrint N false Turn on vertical printing of stems by default.

 use_editor N false If an external is to be used. You must set the editor_name if
this is enabled.

editor_name N - the (nick)name you gave to the editor in the editors section of
this file.

save_dir N - The directory to use for saved workspaces. If this is not set,
then a default of $QDL_HOME/var/ws will be used. You can
also set this in the workspace.

home_dir
This is the root directory for this session. All relative files paths will be resolved against it.

env
This is the environment file. It is a standard java properties file and once the workspace is up and
running, the contents can be seen by issuing

)env

Read up in the qdl workspace reference more about how the environment functions.

Example
 <workspace verbose="true"
 echoModeOn="true">
 <home_dir>/home/ncsa/dev/qdl</home_dir>
 <env>etc/qdl.properties</env>
 </workspace>

 Note that the home directory is set, so that the environment file is resolved against it, viz., the
environment file, being relative (so it does not start with a “/”) is assumed to be at
/home/ncsa/dev/qdl/etc/qdl.properties

	Configuration File Basics
	Aliases.
	File imports

	A complete example
	A server example.
	The Configuration Reference
	config
	qdl
	Attributes
	boot_script
	Logging
	Attributes

	editors
	virtual_file_systems
	vfs
	Attributes
	Supported virtual file system types
	Scheme
	mount_point

	pass_through
	root_dir

	memory
	mysql
	zip
	zip_file

	modules
	Module
	Attributes
	class_name
	path

	workspace
	Attributes
	home_dir
	env

