
The HTTP Module

Introduction
This blurb is about using QDL’s HTTP module. This module allows you to do basic operations to a
website using the HTTP protocol.

Loading the module
This is a Java module and is included in the standard distribution, but is not loaded, so to use it load it
by issuing

 http := j_load('http')

Supported functions

Name Description Comment

close() close the connection All requests will fail until open() is
called

delete() DELETE Use current host

delete(parameters.) DELETE Use current host, add parameters

delete(uri_path, parameters.) DELETE Append uri_path to host, add
parameters

get() GET Use current host

get(uri_path) GET Add add uri path to host, no
parameters.

get(parameters.) GET Use host, parameters. is a stem of
query parameters to be encoded
and added to the path

get(uri_path, parameters.) GET Append path_uri to host, use
parameters

headers() list the current default headers

headers(arg.) set the default headers

host() get the current host

host(host_name) set the current host Returns previous host

is_open() is the connection open?

is_json(response.) Is the response content of type
JSON?

This and is_text accept either the
response or just the headers.

is_text(response.) Is the response content of type
text?

This does not include JSON since
there is a separate method for that.

open() open a new connection

open(insecure) open a new, insecure connection insecure is a boolean, which if true
will turn off security for SSL.
Default is false.

post(arg | arg.) POST Payload may be a string or a stem.

post(uri_path, arg | arg.) POST Append uri_path to host, send
payload

put(arg | arg.) PUT Payload may be a string or stem

put(uri_path, arg | arg.) PUT Append uri_path to host, send
payload

Get returns a stem with entries for status, content and any returned headers.

Typical examples
Assuming you have loaded the above, open up a connection and get

 http:= j_load('http')
 http#host('https://didact-patto.dev.umccr.org/api/visa') ;
 http#open();
true
 z. := http#get({'sub':'https://nagim.dev/p/wjaha-ppqrg-10000'});
 z.
{
 headers: {
 Connection:keep-alive,
 etag:W/"e6-suhkGbMm3fkbNhOR6bOIwIgkh8A",
 Apigw-Requestid:Gv9mdhv4SwMEMHw=,
 Content-Length:230,
 Date:Tue, 05 Oct 2021 19:37:04 GMT,
 Content-Type:application/json; charset=utf-8,
 X-Powered-By:Express
 },
 content: [
 {

s:XnKFkl4RTXtB2DDOf5f4yLtfcTaCGyqMxIV8Q42zX_XR1p9Cnxeqg2KI_4UCzcJZ2XGv_hlqVGOW5_3FE
9ZHCQ,
 v:c:8XZF4195109CIIERC35P577HAM et:1633549022 iu:https://nagim.dev/p/wjaha-ppqrg-
10000 iv:2f69e2650aed4f0e,
 k:rfc8032-7.1-test1
 }
],
 status: {
 code:200,
 message:OK
 }
}
 is_json(z.)

true

So we see the various components of the response, z.:

• headers. - A stem of the headers, where the key is the name of the header and the value is its
value (as a string, so Content-Length is not a number).

• content. - The exact content. Here, it is an array with a single element and note that
 headers.Content-Type

contains application/json and hence was in JSON format. If the content type is anything
else, it will be returned as a stem of lines. The is_json function tell you if the content type was
JSON. In this example, it was a JSON blob with 3 entries.

• status. - The http status, which includes the status code and the message from the server.
Anything other than something in the 200 range is an error.

Note that there are other options for content. but it will always be an array. For instance, from other
servers it may be the lines in the body of the response if the Content-Type is form_encoding. In that
case, you will have to loop through the lines and process each of them in turn.

A GET example

In this case, we have several pages to be fetched

 http := j_load('http');
 http#open();
true
 http#host('https://cilogon.org/.well-known/openid-configuration');

 pages. := ['','fermilab','ligo'];
 while[vi pages.][say(http#get(vi).'content'.'issuer');];∈
https://cilogon.org
https://cilogon.org/fermilab
https://cilogon.org/ligo
 http#close();
true

In this case, it goes to the Cilogon server and grabs some well known pages in turn, constructing the
paths for various VIs (virtual issuers), showing the issuer entry for each page. This is quite basic.
Normally you might enclose the call in a try – catch block, check return codes, etc. but this is to show
how get() works, naught else.

To amplify this, had we issued

 http#host('https://some_service.com');
 http#get('logon', {'id' : 'Knútr.Forkbeard', 'password' : '123 foo'})

The resulting request constructed would be

https://some_service.com/logon?id=Kn%C3%BAtr.Forkbeard&password= 123%20foo

Contrast this with a call like

 http#post('logon', {'id' : 'Knútr.Forkbeard', 'password' : '123 foo'})

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
https://some_service.com/logon?id=Kn%C3%BAtr.Forkbeard&password=123%20foo
https://cilogon.org/.well-known/openid-configuration

which would send the request to https://some_service.com/logon but with the body of the post as

id=Kn%C3%Batr.Forkbeard&password= 123%20foo

https://some_service.com/logon?id=Kn%C3%BAtr.Forkbeard&password=123%20foo
https://some_service.com/logon

	Introduction
	Loading the module
	Supported functions
	Typical examples

