
QDL Functions Reference Manual
Version 1.5

Introduction
This document is the reference for all of the built in function for the QDL programming language.

Function Reference

abs

Description
Find the absolute value of a number

Usage
abs(arg)

Arguments
arg – a number or a stem filled with numbers.

Output
If a single number, the absolute value of that number. If a stem of numbers, the absolute value of all of
them.

Examples
 say(abs(-123));
123

acos
See transcendental functions

acosh
See transcendental functions

&apply

Description
Apply a function to an argument list. This allows you to invoke functions on arguments you can
construct in any number of ways. See also names, arg_count.

Usage
apply(@f)
apply(@f, scalar | list. | stem.)

Arguments
(none) – query for the number signatures associated with this function.

@f – the function reference to f

scalar – if a scalar then the assumption is that f is monadic and it will evaluate against that argument

list. - A list of values. There are fed in order as the arguments

stem. - A stem with the keys being the names of the arguments to the function

Output
The value of f evaluated at the given inputs.

Examples
 f(x,y,z) → x + y + z;
 apply(@f)
[3]
There is a single function named f in this scope and it takes 3 arguments.

 f(1,2,3)
6
 apply(@f, [1,2,3])
6
 apply(@f, {'x':1,'y':2,'z':3})
6

This is f evaluated in 3 ways. The first is directly, by plugging in the values. The second uses a list of
values. In the last case, the signature of the function has the values supplied by name.

There is an operator version of this, ∂ (\u2202), alt + a and redoing the above examples

 ∂@f
3
 [1,2,3]∂@f
6
 {'x':1,'y':2,'z':3}∂@f
6

arg_count

Description
A list of the possible argument counts for a given function reference.

Usage
arg_count(@f | stem.)

Arguments
@f – a single function reference

stem. - a stem of function references

Output
For each function reference, a list of integers for the number of arguments it can accept.

Examples
 f(x)→x-1;
 f(x,y)->x*y
 g(x)->x^2;
 g(x,y)→ g(x) + g(y);
 g(x,y,z) → g(x,y)/(z^2+1);
 arg_count(@f)
[1,2]
 arg_count(@g)
[1,2,3]
 arg_count({'f':@f, 'g':@g})
{
 f: [1,3],
 g: [1,2,3]
}
Note that ∂ (\u2202), alt + a is the operator form

 ∂{'f':@f, 'g':@g}
{

 f: [1,3],
 g: [1,2,3]
}

args

Description
Get the arguments to the current script as a list. If there is no script, then this is empty.

Usage
args({index})

Arguments
script_args([index]none - return the whole list of arguments.

index - (optional) integer for the index desired. Note args(n) == args().n

Output
The list of arguments (no index given) or the specific value. Signed indices are allowed since it is
exactly a stem.

Examples
A table relating this with the deprecated script_args:

Old New Description
script_args(-1) args() get the arg list
script_args() size(args()); get the number of args
script_args(n) args(n) OR args().n get arg with index n

asin

See transcendental functions

asinh
See transcendental functions

atan
See transcendental functions

atanh
See transcendental functions

box

Description
Take any set of variables and turn them in to a stem, their names becoming the keys. This removes
them from the symbol table so the only access afterwards is as part of the stem. See the function unbox
for the inverse of this.

Usage
box(var0, var1, …);

Arguments
There must be at least on argument. The arguments are variables that have been defined. These will be
put in to a stem and removed from the symbol table. Arguments may be scalars or stems.

Ouput
A true if this succeeded.

Examples
 a. := -5 + i(5);
 b. := 5 + i(5);
)vars
a., b.
c. := box(a., b.);
)vars
c.

So a. and b. no longer are in the symbol table, but are in the stem:

 c.

{a=[-5,-4,-3,-2,-1], b=[5,6,7,8,9]}

break

Description
Interrupt loop processing by exiting the loop.

Usage
break();

Arguments
None.

Output
None.

Examples
In this example, the loop terminates if the variable equals 3.

while[
 for_next(j,5)
][
 if[
 j==3
]then[
 break();
]else[
 say('j='+j);
]; // end if
]; // end loop
j=0
j=1
j=2

cb_exists

Description
Check if the system clipboard is supported. This operation is not available in server mode.

Usage
cb_exists()

Arguments
none.

Output
A true if the clipboard is readable, false otherwise.

cb_read

Description
Read the contents of the clipboard as a string. This operation is not available in server mode.

Usage
cb_read()

Arguments
none

Output
The contents of the clipboard as a string. Note that leading and trailing whitespace is removed. The
reason for this is that applications can add it as they see fit, so removing it is about the only reasonable
standard policy.

Example
 cb_read()
the quick brown fox jumped over the lazy dog

This means that the given string was in the clipboard.

cb_write

Description
Write a string to the clipboard. This operation is not available in server mode.

Usage
cb_write(arg)

Arguments
arg - the argument. It may be any data type, but it will be converted to a string before being written.
This also includes stems, which are turned into JSON first.

Output
true if the operation succeeded, false otherwise.

ceiling
See transcendental functions

check_after

Description
Sometimes only a post-positional loop will do – this means that the loop executes at least once. This is
not often the case, but is very hard to replicate. Invoking this function will do just that. Your condition
will be checked post-loop.

Usage
check_after(condition);

Arguments
The argument is a logically -valued expression.

Output
None. This exists only in looping statements

a := 0;
while[
 check_after(a != 0)
][
 say(a);
];
0

check_syntax

Description
Check a string of QDL for syntax errors. This does not actually execute anything! It will simply check
that the given string is valid QDL. Note that there are syntax errors, such as not closing a quote vs
runtime errors, which arise only when the system is tunning because of the state at that point. For
instance

a := 4/b;

would parse fine, but if during execution it turned out that b had a value of 0 (zero) then a runtime error
would happen.

Usage
check_syntax(string)

Arguments
string - a (possibly very long) string of QDL to be checked. This may, for instance, be the entire
contents of a script.

Output
Either an empty string (if everything works) or the message from the parser that contains the line and
position where the first parsing error happens. The parser will exit as soon as it gets any errors, so there
is only one to process.

Examples.
Let us say we had the following, simply electrifying script:

/* A test file */
a
 :=
 3;
b = 'foo;

in the file /tmp/foo.qdl and executed

 check_syntax(file_read('/tmp/foo.qdl'))
line 5:2 mismatched input '=' expecting {'^', '=<', '<=', ';', '*', '/', '++', '+',
'--', '-', '<', '>', '<=', '>=', '==', '!=', '&&', '||', '%', '~'}

(Note that the line wraps here.) This means that on line 5 (lines are counted starting at 1 so line 5 is the
very last line in the file) at position 2 (characters are counted from zero, so the single = there is where
parsing stopped. We all remember that QDL only has compound assignment operators, n'est-ce pas?)
Since QDL could not figure out what to do next, the message is everything it thought might be there.
This gives you a place to start looking, but the parser is not a mind-reader. The message is not telling
you to stick one of those characters at position 2, but that as near it could determine from the grammar,
one of those was probably intended.

If you fix the assignment to := then run it (there is still a missing quote) you get

 check_syntax(file_read('/tmp/foo.qdl'))
missing/unparseable right-hand expression for assignment

Which means that the assignment operator was found and it QDL tried to determine what to assign, but
failed (in this case because the file ended before a close quote was found).

Another example
In this case a file is read (line numbers are in the left hand column):

37: // 37 lines of stuff
38: if[
39: exec_phase == 'post_token' && claims.idp == idp.ncsa
40:][
41: flow_states.accept_requests = has_value('prj_sprout', claims.isMemberOf.);
42:];
43: // many more lines of stuff
 and the following message is displayed:

line 41:32 no viable alternative at input
'if[exec_phase=='post_token'&&claims.idp==idp.ncsa][flow_states.accept_requests='

This means that line 41 of the file had parsing fail at character 32 (the single = sign). Note that the
message has the entire statement (statements end with a ;) up to that point that was being processed so
you can see it in context.

common_keys

Description
Find the keys common to two stems

Usage
common_keys(stem1., stem2.)

Arguments
stem1. and stem2. are any stems.

Output
A list of keys common to both stems. The order of the stems does not matter

Examples
 common_keys(n(10), 6+n(5))
[0,1,2,3,4]

constants

Description
Get constants that QDL defines

Usage
constants([name])

Arguments
None – a complete stem consisting all system constants

name – The value associated with this property name.

Output
A stem consisting of various constants described in this document. Since this is a function, you can
either access the values with an argument or a stem index.

Examples
 say(constants(), true)
{
 var_type: {
 boolean:1,
 string:3,

 null:0,
 integer:2,
 decimal:5,
 stem:4,
 undefined:-1
 },
 file_types: {
 string:-1,
 binary:0,
 stem:1
 },
 detokenize: {
 prepend:1,
 omit_dangling_delimiter:2
 },
 error_codes: {
 system_error:-1
 }
}
This consists of the types of variables that are output from the var_type command.

constant() values

Name Value Description
var_type.boolean 1
var_type.decimal 5
var_type.integer 2
var_type.null 0
var_type.stem 4
var_type.string 3
var_type.undefined -1
error_codes.system_error -1 Used in try – catch blocks. If there is some internal error

processing then this is raised and a message set.
file_type.binary 0 Return file contents as base 64 encoded byte stream
file_type.stem 1 Return file contents in a stem list, one entry per line
file_type.string -1 Return file contents as single string
detokenize.prepend 1 See the detokenize function section
detokenize.omit_dangling_d
elimiter

2 See the detokenize function section

contains

Description
To find if a string contains another string

Usage
contains(source, snippets{, case_sensitive})

Arguments
source – a string or stem of strings that is the target of the search.

snippets – a string or stem of strings that are what are being search for

case_sensitive – (optional) if this is true (default) then the check is done respecting case. If it is
false then the matching is done after converting the arguments to lower case. (Note that the original
values are never altered.)

Output
A scalar or stem (if the arguments were stems) if the snippet(s) was (were) found. Note that

• source a scalar, snippet a scalar → result is a simple boolean

• source a scalar, snippet a stem → result is a stem with identical keys to the snippet and with
boolean entries

• source a stem, snippet a stem, → result is a stem with identical keys to the source and boolean
entries.

• Both stems, the result is conformable to the left argument and the right. In other words, to be in
the result, only entries with matching keys are tested.

Examples
Example 1.

 a := 'What light through yon window breaks?';
 contains(a , 'Juliette');

returns false, since there is no string 'Juliette' in the first string.

Example 2.

 source := 'the rain in Spain';
 snippet.article := 'the';
 snippet.1 := 'in';
 snippet.2 := 'Portugal';

 output. := contains(source, snippet.);

 output.article == true;
 output.1 == true;
 output.2 == false;

Example 3.

 source.foo := 'bar';
 source.fnord := 'baz';
 source.woof := 'arf';

 snippet.foo := 'ar';
 snippet.fnord := 'y';

 output. := contains(source., snippet.);

 output.foo == true;
 output.fnord == false;

In this case, only the corresponding keys are checked if both arguments are stem variables.

continue

Description
During loop execution, skip to the next iteration.

Usage
continue();

Arguments
None.

Output
None.

Examples
In this example, the loop skips to the next iteration is the variable is 3.

while[
 for_next(j,5)
][
 if[
 j==3

][
 continue();
]else[
 say('j='+j);
]; // end if
]; // end loop
j=0
j=1
j=2
j=4

cos
See transcendental functions

cosh
See transcendental functions

copy

Description
Copy from one list to another.

Usage
copy(source.{, start_index, length}, target.{, target_index})

Arguments
source. = the stem that is the source of the copy.

start_index = the index in the source where the copy starts. Default is 0

length = how many elements to copy, default is from start_index to end

target. = the target stem of the copy

target_index = the index in the target that will receive the copy. default is 0. Note that any elements
already in these locations will be replaced. If you need to insert elements, consider using the insert_at
command.

N.B. That the start and target indices may be signed, so you can specify from the end of the list.

Output
The updated target stem. Note that the target is modified in this operation.

Examples
 source. := [;5]+10
 target. := [;6] - 50
 copy(source., 2, 3, target., 4)
[-50,-49,-48,-47,12,13,14]
So this took the 3 elements from source. starting at index 2 and copied them to target. starting at index
4 there.

date_ms

Description
Compute and convert dates between milliseconds and the ISO 8601 standard format.

Usage
date_ms([arg])
date_iso([arg])

Arguments
either none, an argument or stem of arguments.

None:

date_ms() – returns the current time in milliseconds

date_iso() – returns the current time in ISO 8601 format.

A single argument

date_ms(arg) -- if arg is in ms, return it, otherwise convert it to ISO format

date_iso(arg) – if arg is ISO format, convert it to ms. Otherwise return it.

Output
The date in the appropriate format.

Examples
 say(date_iso());
2020-01-18T22:10:38.250Z

 say(date_ms('2020-01-18T22:10:38.250Z'));
1579385438250

 say(date_ms(1579385438250));
1579385438250

date_iso

See date_ms()

debugger

Description
Set the debugging level or issue debugging messages.

Usage
debugger()
debugger(cfg.)
debugger(level)
debugger(level , message)

logger()
logger(cfg.)
logger(level)
logger(level, message)

Arguments
(no arguments) - Inquire about current level

cfg. - a stem of configuration values (see previous section).

level - (only) set the current level for all subsequent operations. Use either integer or moniker

level, message = output the message at the given level

message - (only) output the message at the INFO (default) level.

Output
If there is no argument, the result is current configuration.

If the argument is a new level, the result is the previous level

Otherwise, a true or false is returned if the operation succeeded.

Examples
Note that you must set the highest level you want first – this sets the global logging/debug level. The
way this operates is that you set the debugging/logging level to the maximum you want, then tag each
message with the appropriate level. Logging levels are in the constants().sys_log stem. So for
instance if you set the debug level to 3, then

debugger(2, ‘foo’)

would display nothing, since 2 < 3. Debugging is printed to standard error and ends up on the console,
(GUI, ASCII or ANSI mode) while log entries are written to the log file (current one is
info().boot.log_file.

See above for an example. Logging and debugging is not hard and is very, very useful. In particular, in
cases where QDL is used for scripting on a server, it may be the only way to get feedback in real time
about how processing is happening inside the QDL runtime.

decode

Description
Decode an encoded string. The result will be a simple string, so if the original is binary, you will see
gibberish.

Usage
decode(arg{,type})

Arguments
arg – may be a string or a stem of strings. Each string will be decoded.

type - optional integer for the type of encoding or decoding. Default is 64 for base 64.

type name notes
 0 qdl_var Variable encode/decode that is QDL safe. Used in boxing, some JSON
 1 url RFC 3986, percent encode/decode
 16 hex RFC 4648, character set is a-e0-9
 32 b32 RFC 4648, character set is A-Z2-7
 64 b64 RFC 4648, character set is A-Za-z0-9-_
 100 xml1.0 encode as per XML 1.0 standard
 101 xml encode as per XML 1.1 standard
 110 json encode as per JSON standard
 120 java encode as per Java standard
 130 html3 encode as per html 3 standard
 131 html encode as per html 4 standard
 140 csv RFC 4180 comma separated values
 150 ecma ECMA standard (includes, Java Script,
 Action Script and several others)
 160 xsi Shell command escaping.

Base 16,32 and 64 follow this specification.

Output
The decoded string.

Examples
 decode('VGhlIHF1aWNrIGJyb3duIGZveCBqdW1wcyBvdmVyIHRoZSBsYXp5IGRvZw')
The quick brown fox jumps over the lazy dog

detokenize

Description
Converts list of tokens into a string using the delimiter between entries. Note that each element of the
list will be converted to a string. See also tokenize.

Usage
detokenize(arg, delimiter{,options})

Arguments
arg - stem of tokens to detokenize

delimiter - the delimiter to put between tokens

options - sum of 0 or 1 for append or prepend, 2 for omit dangling delimiter

So options = 0 means append, have a trailing delimiter

 options = 1 means prepend, delimiter

 options = 2 means append, omit trailing delimiter

 options = 3 means prepend, omit first delimiter

Output
The detokenized string.

Example
 detokenize([;4],'|')
0|1|2|3|

Note the trailing | added at the end.

https://datatracker.ietf.org/doc/html/rfc4648

 detokenize([;4], '|', 0)
0|1|2|3|
 detokenize([;4], '|', 1)
|0|1|2|3
 detokenize([;4]], '|',2)
0|1|2|3
 detokenize([;4], '|', 3)
0|1|2|3

omits the trailing |. To make a blank delimited list:

 caps.
[
 foo,
 compute.create:/,
 storage.read:/store
]
 detokenize(caps., ' ')
foo compute.create:/ storage.read:/store

diff

Description
Compare two stems, returning a stem of the differences only between them, element by element.

Usage
diff(x., y.{,subsettingOn})

Arguments
x. - the first argument

y. the second arguments

subsettingOn - (optional) a boolean that if true means that only common keys are processed. if false,
then missing keys are treated as if they have a null value.

Output
A stem whose keys are the same in both (subsettingOn == true) or every key in either of the stems
(subsettingOn == false) In the case of reading files line by line, this gives a QDL analog to the
venerable unix command line utility diff.

Examples
 diff({'a':'p','b':'q'},{'a':'p','b':'r', 'c':'t'})
{b:[q,r]}

There is one difference between these stems. For the key b the first argument has value q and the
second has value r.

 diff({'a':'p','b':'q'},{'a':'p','b':'r', 'c':'t'}, false)
{b:[q,r], c:[null,t]}

In this case, subsetting is turned off and in addition to the first result, it tells us that for the key c the
first argument is missing this and the second has a value of t.

 diff({'a':'p','b':'r', 'c':'t'}, 'p')
{b:[r,p], c:[t,p]}

In the case of a scalar argument, this is extended to every element on the left, so the result says that
entries b and c do not have the value of 'p'

differ_at

Description
Find first index where two strings differ. If the strings are equal then a value of -1 is returned. If one
string is a substring of another, then the index is the length (i.e. this is the index in the longer string).
You may also apply this to stems of strings.

Usage
differ_at(s0, s1)

Arguments
s0, s1 can be either strings or stems of strings.

Output
The first index where the strings fail to match or -1 if they are identical.

Example
 differ_at('abcde', 'ab'); // first index they are different is 2 in 1st arg
2
 differ_at('abcd','abcd'); // -1 means they are equal
-1
 differ_at(['abcd','efgp'],['abq','efghij'])

[2,3]
 differ_at(['abcde','abed'], 'abcq')
[3,2]

dim

Description
Return the dimension vector associated with a stem.

Usage
dim(arg)

Arguments
arg - the argument to operate on. It may be a scalar (trivial case) or a stem.

Output
If arg is a scalar, the output is the constant 0. If it is a stem, it is the number of independent axis each
with their size.

Examples

 dim(4)
0

A scalar has no dimension.

 dim(n(3,4,5))
[3,4,5]

Dimension vectors can be extremely useful to query a stem about its structure.

dir

Description
List a directory content

Usage
dir(arg)

Arguments
arg - the path to a directory. It may also be in a virtual file system

Output
A stem list of the elements of the directory

Examples
 dir('qdl-vfs#/zip/root')
[scripts/, other/, readme.txt]

This lists the given directory in the mounted VFS. Note that in this case it so happens to be a zip
archive of a file, mounted at qdl-vfs#/zip/.

docs

Description
Get the documentation for a module

Usage
docs(var)
docs(uri)

Arguments
var - the variable for a module

uri – the unique namespace for the module (useful if the module has been loaded, but not yet imported).

Output
A stem of strings that is the documentation for the module.

Examples
 convert := j_load('convert')
 print(docs(convert))
 0 : module name : QDLConvertModule
 1 : namespace : qdl:/tools/convert
 2 : default alias : convert
 3 : java class : edu.uiuc.ncsa.qdl.extensions.convert.QDLConvertModule
 4 : QDL extended conversion module. This will allow you to convert
 5 : stems to and from various formats.
 6 : Supported formats are
 7 : XML, YAML, HOCON (simplified JSON)

… lots more

encode

Description
Encode a string in. The returned string is URL safe.

Usage
encode(arg{,type})

Arguments
arg – a string or it may be a stem of strings.

type - integer that sets the type.

Output
If a single argument, it will be encoded. If a stem, each element will be. Non-strings are not changed.

Examples
 encode('The quick brown fox jumps over the lazy dog')
VGhlIHF1aWNrIGJyb3duIGZveCBqdW1wcyBvdmVyIHRoZSBsYXp5IGRvZw

Since constants() contain the names of all of the supported encodings, you can compare what they
do easily. IN this example, we have some Amharic text and a few weird other symbols to force more
exotic encodings.:

print(encode('<woof" ወንጌል 6%"$',constants().codecs.string.))
 base_16 : 3c776f6f6622e18b88e18a95e18c8ce1888d202036252224
 base_32 : HR3W633GELQYXCHBRKK6DDEM4GEI2IBAGYSSEJA
 base_64 : PHdvb2Yi4YuI4YqV4YyM4YiNICA2JSIk
 csv : "<woof"" ወንጌል 6%""$"
 ecma : <woof\"\u12C8\u1295\u130C\u120D 6%\"$
 html : <woof" ወንጌል 6%"$
 html3 : <woof" ወንጌል 6%"$
 java : <woof\"\u12C8\u1295\u130C\u120D 6%\"$
 json : <woof\"\u12C8\u1295\u130C\u120D 6%\"$
 qdl_var : $3Cwoof$22$E1$8B88E1$8A$95$E1$8C$8C$E1$88$8D$20$206$25$22$24
 url : %3Cwoof%22%E1%8B%88%E1%8A%95%E1%8C%8C%E1%88%8D%20%206%25%22%24
 xml : <woof" ወንጌል 6%"$
 xml1.0 : <woof" ወንጌል 6%"$
 xsi : \<woof\"ወንጌል\ \ 6\%\"\$

excise

Description
Remove every occurrence a given value from a stem.

Usage
excise(target., values.)
When done, values. target. returns true for every entry of values.∉

Arguments
target. - the stem to be operated upon

values. - the values to be removed

Output
The altered target. Note target. Will be altered, so if you do not want that, make a copy first.

Examples
E.g. Remove the value of 3 from a given array.

 z. n(5,4,[;7])≔
 excise(z.,3)
[
 [0,1,2],
 [4,5,6,0],
 [1,2,4],
 [5,6,0,1],
 [2,4,5]
]
Note there are no 3’s in the resulting stem. A great usage is to do surgery on parts of stems

 z. n(5,4,[;7]);≔
 excise(z.2, 2)
[1,3,4]

exclude_keys

Description
Remove a set of keys from a stem.

Usage
exclude_keys(stem1,, stem2.)

Arguments
stem1. = the target of this operation.

stem2. = a list of keys to be removed. Note that the values of this stem are what are to be removed
from the target. There is no assumption that the keys of stem2 are integers, for instance.

Output
A new stem that contains none of the keys in stem2.

Examples
 a.foo := 'q';
 a.bar := 'w';
 b.w := 42;
 b.a := 17;
 say(exclude_keys(b., a.));
{a=17}

 a.rule := 'One Ring to rule them all';
 a.find := 'One Ring to find them';
 a.bring := 'One Ring to bring them all';
 a.bind := 'and in the darkness bind them';

 list.0 := 'rule';
 list.1 := 'bring';

 exclude_keys(a., list.)
{bind:and in the darkness bind them,
 find:One Ring to find them}

exp
See transcendental functions

expand ()⊕

Description
Apply a dyadic function pairwise to each member of a list, returning the intermediate results.

Usage
expand(@f, list.)

Arguments
@f - reference to the function you want to use.

list. - the list to be operated on

Output
A list where the (dyadic) function f is applied to each element in the list successively.

Examples
The factorial of a number, n! is the product of all the numbers 1 * 2 * . . . * n. Here’s how to compute
the factorial of 5 with all the factorials for 1, 2, 3 and 4:

 expand(@*, 1 + n(5))

[1, 2, 6, 24, 120]

It is more obvious if we show it against the arguments

[1, 2, 3, 4, 5]
 * * * *
[1, 2, 6, 24, 120]
Compare this with reduce which only returns the final result.

Another example: Getting part of a list
Let’s say we wanted to get only the elements of a list of integers less than or equal to 4. Here’s how

 a. := 1+ 2*n(5)
 mask(a., expand(@&&, a. <= 5))
[1, 3, 5]

A final example. Computing the terms of a series
If we have a series that depends on the previous term and current index, such as xn = (xn-1

2 -1)/(n2 + 1)

then this can be done as follows:

 r(x,y)->(x^2 - 1)/(y^2+1)
 expand(@r, [1;10])
[1,0,-0.1,-0.058235294117647,-0.038331101943039,-0.026987316935779,
-0.019985433694492,-0.015378470499077,-0.012192237837135]

file_read

Description
Read a file. The result is always a string

Usage
file_read(files.{, types.})
file _read(file_name {, as_string | to_list | is_binary | is_ini})

Arguments
If the first (stem) form,

files. = stem of full file paths to read

types. = stem with corresponding entries of files with their type. Missing entries use default type.

If the second (scalar) form

file_name – the full path to the file. This may be in a virtual file system too.

The next argument is optional and is an integer

as_string = -1 – return the contents of the file as one long string (default).

is_binary = 0 – return the result as a base 64 encoded string of bytes.

to_list = 1 – return the result as a stem list each line separate

is_ini = 2 - parse the file as a QDL initialization file.

If no second argument is given, the result is simply a string of the entire contents of the file. Note that
these constants are available via constants() as file_types.

Output
Stem form: A stem where each entry has a the content of the file a its value.

Scalar form: Either a simple string (only file name is given), a stem if it is flagged as a list or ini file
(see separate documentation for how ini files work) or a base64 string if it is flagged as binary.

Examples
cfg. := file_read('/var/lib/tomcat/conf/server.xml', 1);

Would read in the file /var/lib/tomcat/conf/server.xml and return a stem. Each line in the file is in order
in cfg.0, cfg.1, … Compare this with

big_string := file_read('/var/lib/tomcat/conf/server.xml');

Which reads the same file and puts the entire thing in a single string.

my_b64 := file_read('/var/lib/crypto/keystore.jks' , 0);
this reads the keystore.jks file (which is binary) and base64 encodes it, storing it in the my_b64
variable. QDL does not have the capacity to do low-level operations on binary data, but it can move
them where they need to go faithfully.

A couple of more examples:

 // read a file as a stem
 say(file_read('/home/ncsa/dev/ncsa-git/security-lib/ncsa-qdl/src/test/
resources/hello_world.qdl',1));
{/*, The expected Hello World program. , Jeff Gaynor, 1/26/2020, */, say('Hello
world!');}

 // read the exact same file and turn the bytes into a base 64 string.
 say(file_read('/home/ncsa/dev/ncsa-git/security-lib/ncsa-qdl/src/test/
resources/hello_world.qdl',0));
LyoKICBUaGUgZXhwZWN0ZWQgSGVsbG8gV29ybGQgcHJvZ3JhbS4gIAogIEplZmYgR2F5bm9yCiAgMS8yNi8
yMDIwCiovCnNheSgnSGVsbG8gd29ybGQhJyk7Cg

say(decode('LyoKICBUaGUgZXhwZWN0ZWQgSGVsbG8gV29ybGQgcHJvZ3JhbS4gIAogIEplZmYgR2F5bm9
yCiAgMS8yNi8yMDIwCiovCnNheSgnSGVsbG8gd29ybGQhJyk7Cg'));
/*
 The expected Hello World program.
 Jeff Gaynor
 1/26/2020
*/
say('Hello world!');

(This is the sample hello world program for qdl).

file_write

Description
write contents to a file

Usage
file_write(files.)

file_write(file_name, contents{,type})

Arguments
If the first (stem) form:

files. = a stem of entries to process. Each entry has

key value
path The full path to the file

content Either a string or stem of strings.
type (optional) either the integer file type or if a boolean, true means to base 64 encode it.

Any entry that is not of this form is ignored.

If the second (scalar) form:

file_name – the name of the file.

contents = A string or a stem list. If the stem is not a list (so indices 0, 1, …) then this will fail.

type (optional) – an integer of one of the following

as_string = -1 – treat the contents of the file as one long string (default).

is_binary = 0 – treat the contents as a base 64 encoded string of bytes and decode to binary.

to_list = 1 – treat the contents as a stem list each line separate

is_ini = 2 - treat the contents as an ini file and write it in that format.

If you omit the type, it is assumed that the contents should be treated as text.

Output
Returns true if this succeeded.

Examples
 hello_world :=
'LyoKICBUaGUgZXhwZWN0ZWQgSGVsbG8gV29ybGQgcHJvZ3JhbS4gIAogIEplZmYgR2F5bm9yCiAgMS8yNi
8yMDIwCiovCnNheSgnSGVsbG8gd29ybGQhJyk7Cg';
 file_write('/tmp/test.qdl', hello_world, 0);

This is just the base64 encoded hello_world.qdl script from the read_file example. The argument of 0
says it is base 64 encoded and to decode it to the file. In this example, you can go check it just decodes
to the Hello world program.

The same example in stem form

 file_write([{'path':'/tmp/test.qdl', 'content':hello_world, 'type':0}]);
[true]

This writes a list of files (with a single entry) and returns a stem with the same shape, i.e. a list that
contains if the operation worked.

*floor

for_each ()∀

Description
Apply an n-adic function, f, to each element of the outer (Cartesian) product of the arg_k.

Note that in QDL, there is subsetting involved in stem operations. For something like

 1+2*n(4) == n(7)
[false,false,false,false]

This is a very natural choice and the right one. However, if we needed to preserve the second argument,
so 7 elements, for_each is made to order.

 reduce(@||, for_each(@==, 1+2*[;4], [;7]))
[false,true,false,true,false,true,false]

This compares every element in n(4) with every element in n(7), then reduces that result. reduce
squishes along the zero-th axis, leaving the 7 element list. See below for another example of creating a
table of values this way. You can pass in any function you want to do this. e.g.

 q(x,y) -> x*y
 z. := for_each(@q, [|-1;1;10|],[0;2;0.25])

Note: This applies to the zero-th axis of each argument. If you really want to get geeky, dyadic
for_each generalizes

a. ⊗ b.

i.e., the tensor product of two vectors to arbitrary functions, not just multiplication. Geeky aside: The
reason that we use @ for function references is because it kinda looks a tiny bit like the tensor product
sign. Kinda. In any case, you can use the (⊗ unicode , \u2297) in place of @ if you like, so

 reduce(, ≡ [1+2×[;4], [;7]])⊗∨ ⊗ ∀
[false,true,false,true,false,true,false]

is fine QDL.

Comment. for_each largely replaces looping in most cases. If you are writing a while[] loop, do
consider if for_each would work. Not always (or we would not have a looping construct) but it does
work a very large percentage of the time, if more efficient and makes the code vastly easier to read.

Usage
for_each(@f, arg_1, arg_2, ..., arg_n)
@f [arg_1,...arg_n]∀

Arguments
@f - the n-adic function. It will be fed all of the elements from all the stems. You may also have
lambdas.

arg_1., arg_2., … arg_n. - n values (stems or scalars) to process. every point of each of these will
be fed in succession to f to evaluate.

Note that for the notation, the argument is a list and the left hand side must be a function reference ∀
(not a lambda).

Output
A stem consisting of the outer (Cartesian) product of each of the arguments with the function f applied
to each. Dimension is [dim(arg_1.), dim(arg_2.),. . ., dim(arg_n.)]

Examples
Simple example, making a multiplication table.

 a. := for_each(@*, 1+[;5], 1+[;6])
 a.
[
 [1,2,3,4,5,6],
 [2,4,6,8,10,12],
 [3,6,9,12,15,18],
 [4,8,12,16,20,24],
 [5,10,15,20,25,30]
]

Things to note:

• The result is the product of the stems, so here there is a 5 x 6 array that results. a.i.j is the
product of the i-th and j-th elements.

• An alternate way to do this would involve a double while loop over the elements, multiply
them then set the value of a.i.j directly. for_each should be considered any place you might
want to loop, since it is probably the more efficient way to do it and vastly easier to use than
nested loops.

Example
Fill a 5×6 array with zeros

 for_each((x,y)->0,[;5],[;6])
[
 [0,0,0,0,0,0],
 . . .
]

In this way, for_each lets you create any sized array you want with any values. A 10×10 identity
matrix:

 for_each((x,y)->x==y?1:0,[;10],[;10])
[
 [1,0,0,0,0,0,0,0,0,0],
 . . .
]

Example.
Create the grid points for a quadric (polynomial) surface over a region.

 z. := for_each((x,y)->x*y, [|-1;1;15|],[0;3;0.25])
 dim(z.)
[15,12]

This creates a table over the region of the plane for -1 <= x <= 1
and 0 <= y < 3. There are 15 total points in the x direction and the y direction is done in increments of
0.25, resulting in 12 values, so the result is a 15 x 12 array.

Example.
Turning a stem of values into a stem of string.

One common case is that you have a stem of values, a. and need to change each element to a string.
Invoking the to_string method does not give you the result:

 z. := ['abc', true, 0.23, -1]
 to_string(z.) // A single string of characters, not a list
[abc,true,0.23,-1]

 w. := for_each(@to_string, z.) // returns a list of strings.
 w.
[abc,true,0.23,-1]
 size(w.)
4

for_keys

Description
This is a non-deterministic loop over the keys in a stem variable. All the keys will be visited, but there
is no guarantee of the order. Also the keys are strings unlike for_next where they are integers.

Usage
for_keys(var, stem.);

Arguments
var is a simple variable and will contain the current key during the loop. If it has already been defined,
its values will be over-written.

stem is a stem variable. The keys of this stem will be assigned to the var and may be accessed.

Output
Nothing. This is only used in looping constructions.

Example
 my.foo := 'bar';
 my.a := 32;
 my.b := 'hi';
 my.c := -0.432;
 while[for_keys(j,my.)]do[say('key=' + j + ', value=' + my.j);];

key=a, value=32
key=b, value=hi
key=c, value=-0.432
key=foo, value=bar

for_lines

Description
This allows for reading a text file one line at a time. It only works in a loop.

Usage
for_lines(var, file_path)

Arguments
var - the name of the variable

file_path - the path to the file

Output
This only exists in loops.

Example
If you had a file name /tmp/mystery.txt

 while[for_lines(x, /tmp/mystery.txt)][say(x);]
I can’t help thinking:
Why is “abbreviation”
A very long word?
This example just prints out each line. The intent of this is for processing very large files, since the
other option is to read the file in as a string or stem which may be slow or unwieldy.

for_next

Description
This allows for a deterministic loop and will run through a set of integers.

Usage
for_next(var, stop_value, [start_value, increment]);
for_next(var, arg.)

Arguments
Only the first two are required. The two cases are

First

var the variable to be used. As the loop is executed, this value will change.

stop_value the final value for the loop. When the variable acquires this value, the loop is terminated
(so the loop body does not execute with this value!)

start_value (optional, default is 0). The first value assigned to var.

increment (optional, default is 1). How much the loop variable should be incremented on each
iteration.

Second

var - the variable to be used. As the loop is executed, this value will change.

arg. - A list which will be iterated over, returning each value in the list.

Output
None. This only is used in loops.

Examples
A simple loop

while[
 for_next(j,5)
]do[
 say(j);
];
0
1
2
3
4

Another common way to use a loop is to decrement. Here it ends at zero, starts at 5 and the increment
is negative, hence it counts down:

while[
 for_next(k, 0, 5, -1)
]do[
 say(k);
];
5
4
3
2
1

A list example.

 while[for_next(i,2*[;5])][say(i);]
0
2
4
6
8

Each value of the list is set to i in turn.

And here is an example of looping through the elements of a stem variable.

// Set the values initially
my_stem.0 := 'mairzy';
my_stem.1 := 'doats';
my_stem.2 := 'and';
my_stem.3 := 'dozey';
my_stem.4 := 'doats';

 while[for_next(x,my_stem.)][say(x);]
mairzy
doats
and
dozey
doats

fork

Description
Start a given script in its own thread, inheriting the current state. Note that these are not the same as
debugging sessions, but are completely separate processes.

Usage
fork(path, arg0, arg1, …)

Arguments
path - the path to the file. The current script path will be searched.

argn -arguments to the script.

Output
An integer that is the process id number for this thread. Note that you may use the kill function with
the pid number to stop the thread if it is active.

Example
 fork(‘vsf#/path/myscript.qdl’, false, [|-pi()/2, pi()/2, 11|])
53575

This means that the given script vsf#/path/myscript.qdl is executing on the thread with pid 53575. If
you want to see all current thread, issue

)si threads
53575 vsf#/path/myscript.qdl

And if you want to stop this thread, issue

 kill(53575)
1

from_json

Description
Take a string that represents an object in JSON (JavaScript Object Notation) and return a stem
representation. JSON is quite popular, (as in, it is inescapable anymore) but do remember it is a
notation for objects that live in Javascript. To be blunt, it was designed to send information in REST-ful
applications but because it is easy to use, is now being used by many as a general data description
format. It was intended to tightly couple in-memory Javascript data structures on a server to be
processed by a browser, so using it generally is arguably a bad idea. And yet, here we are. If you stick
to the intended original purpose, it works great.

Note that there are some incompatibilities. First off, there is no actual standard way for JSON to
represent all data, so you have to know what the structure of a JSON object is before you get it. A URI
may be a string, or it may be represented as some arcane JSON structure. Same with dates.

Stems are more general data structures than JSON, and cannot be fully represented. For instance, JSON
objects do not have default values, not can they represent sets. If you have a stem of sets with a default
value, it may be very hard to get a resonable JSON format of it. This is a limitation of JSON.

Heading in the other direction, JSON can be represented as a QDL stem, except that QDL does not
allow quite stem keys that end in a period. This JSON object:

{".":"a"}

cannot be directly ingested as a QDL object since it would be interpreted as a trivial stem. Compare:

 from_json('{"a.":"a"}')
{a:a}

So we see that the extra “.” on the key is consumed converting it to a stem. This can be just fine in most
cases, but does prevent round-tripping. This is why there are various conversion options that use
encode.

 q := '{".":"a","..":"b","...c..":"c"}'
 j. := from_json(q,0)
 j.;
{
 $2E:a,
 $2E$2E:b,
 $2E$2E$2Ec$2E$2E:c
}
 to_json(j., 0,0)
{".":"a","..":"b","...c..":"c"}

Usage
from_json(var{, convert_type})

Arguments
var = the string or stem of strings to be converted

convert_type = (optional) if true apply encode with the given type to each key.

Output
A stem that contains the information in the original.

Note that JSON properties will be turned in to valid QDL variable names, escaping them if requested.
This permits good interoperability.

Examples
A simple example.

 from_json('{"woof":"arf","0":0,"1":1,"2":2}')
[0,1,2]~{woof:arf}

Reading a file

// here is a large, messy example
 b := read_file('/tmp/my_json.json');

// (some indenting was done manually to keep this vaguely readable)
 b
{"a":"b","s":"n","d":"m",
 "foo":{"tyu":"ftfgh","rty":"456","ghjjh":"456456",
 "woof":{"a3tyu":"ftf222gh","a3rty":"456222","a3ghjjh":"422256456"},
 "0":"qwe","1":"eee","2":"rrr"},
"0":"foo","1":"bar"}
 // make a stem
 b. := from_json(b)
 say(b., true)
[foo,bar]~{
 a:b,

 s:n,
 d:m,
 foo:[qwe,eee,rrr]~ {
 tyu:ftfgh,
 rty:456,
 woof: {
 a3tyu:ftf222gh,
 a3rty:456222,
 a3ghjjh:422256456
 },
 ghjjh:456456
 }
}
// And just to check it really is a stem
 b.foo.woof.
{a3tyu=ftf222gh, a3rty=456222, a3ghjjh=422256456}

A stem example.
Here is an example to read an encoded JWT (JSON Web Token) from the clipboard, decode it and turn
it into a stem. A JWT is of the form X.Y.Z where X, Y and Z are base 64 encoded. Z (if present) is a
binary signature, so cannot be read.

 jwt()->from_json(decode(tokenize(cb_read(), '.')\[0,1]));

Typical JWT. Copy it to the clipboard:

eyJraWQiOiJCRUZGRjU4NzZEMTAiLCJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9.
eyJ3bGNnLnZlciI6IjEuMCIsImF1ZCI6Imh0dHBzOi8vd2xjZy5jZXJuLmNoL
2p3dC92MS9hbnkiLCJzdWIiOiJqZ2F5bm9yIiwibmJmIjoxNjU2MDIwMjMxLCJz
Y29wZSI6Ii9ob21lL2plZmYifQ.
bYPQkk7VDPVF4EYM4KpPRtzdIEyaPraEc7Tg
-xr6FBXzg5gDUdEWyscAvBbGm77Pj0Hn0OJrKZ1lux8SgB_DkBo

Do note that base 64 decode ignores any embedded blanks and linefeeds, as per the spec.

 jwt()
[
 {
 kid:BEFFF5876D10,
 typ:JWT,
 alg:RS256
 },
 {
 wlcg.ver:1.0,
 aud:https://wlcg.cern.ch/jwt/v1/any,
 sub:jgaynor,
 nbf:1656020231,
 scope:/home/jeff
 }

Note that the we extract the first two fields since the last field of Z here is binary hence not valid JSON
and therefore and cannot be turned into a stem.

Escaping of JSON keys.

In this example, a simple JSON list is given and the key for this list is not a valid QDL key (ends in a
period). In this case, the name is escaped.

 a. := from_json('{"#$rt.":[0,1,2]}', 0);
 a.
 from_json('{"#$rt.":[0,1,2]}', 0)
{$23$24rt$2E: [0,1,2]}
 a.$23$24rt.2 := 5
 a.
{$23$24rt.:[0,1,5]}
 to_json(a., 0,0)
{"#$rt":[0,1,5]}

Since you can loop over all indices in a stem easily, odd names can be handled:

if[is_defined(a.encode('#$rt.',0))]then[/*do stuff*/]

from_uri

Description
Take the output from the to_uri call and turn it into a single valid URI.

Usage
from_uri(uri.)

Arguments
A stem with the correct components for a uri.

Output
A string that is the uri.

Examples

 u := 'https://www.google.com/search?
channel=fs&client=ubuntu&q=URI+specification#my_fragment';
 uri. := to_uri(u);
 u == from_uri(uri.)
true

funcs

Description
Get a list (as text, not references) for all functions either in the current scope or in an imported module.

Usage
funcs()

funcs(var)

Arguments
(none) – list all in the current scope

var - for a module, this will list the functions in the module

Output
A list of string representations of functions, as name([arg_count0, arg_count1,…]). E.g.

g([1,4])
means there is a function named g that takes 1 or 4 arguments.

Examples
 math:=import('qdl:/ext/math')
 funcs(math)
[acot([1]),acoth([1]),acsc([1]),acsch([1]),asec([1]),asech([1]), …

gcd
See transcendental functions

halt

Description
Halt processing of a script at the given line. This is normally used only in a debugging session in the
workspace. See the workspace documentation for a treatment of how this is used.

Usage
halt([message])

Arguments
message - (optional) a message to be displayed in the state indicator.

Output
An integer which is the process identifier (pid). You may use this in the workspace to restart execution,
attach to the state and inspect as well as other things.

Example
a := 2 + 3;
halt(‘a was set’);
// .. other stuff

The effect here is that the script will stop at this point and in the workspace, you might see something
like

) 0 &
11
)si list
pid | active | line | time | size | message
0 | * | | Mon Oct 26 16:15:20 CDT 2020 | 2965 | system
11 | | 1 | Mon Oct 26 16:16:06 CDT 2020 | 3001 | a was set

This shows that this pid, 11, is active and suspended. The ampersand (&) in the run command tell the
workspace to clone its state in toto and run the script inside that. See the workspace documentation for
a full explanation.

has_key (,)∋ ∌

Description
Check is a list of keys is in a target stem.

Usage
has_keys(list., target.) or list.∋ target. or list.∌ target.

Arguments

target. – the target of this operation

list. – a list of keys.

Output
A boolean list with true as the value if the target contains the key and false if it does not.

Examples
Just because it is easy to do, I am going to make a stem filled with 5 random integers, then a list of 10
indices. Obviously only the first 5 indices in w. will be in var.:

 var. := random(5);
 w. := n(10);
 has_keys(w., var., w.)
[true,true,true,true,true,false,false,false,false,false]
 w. var.∋
[true,true,true,true,true,false,false,false,false,false]
 w. var. ; // does NOT have these keys∌
[false,false,false,false,false,true,true,true,true,true]

has_value or , ∈ ∉

Description
Loop over the values of a stem or set

Usage
has_value(var, stem.|set) or var stem. | set∈

Arguments
var - the variable to be referenced in the body of the loop

stem. or set - either a stem or a set.

Output
In loops, nothing. This may also be used generally, see below.

Example
Examples of both operators

 3 [0,2,4,6]∉

true
 4 [0,2,4,6]∈
true

Use the fibonacci function in the math extensions module to generate the first 25 Fibonacci numbers,
then pick the even ones and print those out. Here pick returns a set and the values of that are iterated
over.

 while [j pick((x)->mod(x,2)==0, fibonacci([;25]))]∈
 do [say(j);]
0
2
8
34
144
610
2584
10946
46368

Nota Bene: you cannot use while looping since that makes no sense.∉

hash

Description
Calculates the digest of the arguments and returns the value as a hex string. There are various
algorithms supported:

Supported algorithms are:

md2
md5
sha-1
sha-2 (same as sha-256)
sha-256
sha-384
sha-512

The arguments are case insensitive. The default is SHA-1, which is a fixed 20 byte result (and the
resulting output is a hexadecimal string exactly 40 characters long, regardless of the size of the input
string).

Usage
hash(arg{,algorithm})

Arguments
arg – either a single string or a stem of strings.

algorithm – which algorithm to use. Default is SHA-1

Output
A hex string that is the hash. Note that while this is a hex string, it is most emphatically not the same as
the output from the encode function.

Examples
 hash('the quick brown fox jumps over the lazy dog')
2fd4e1c67a2d28fced849ee1bb76e7391b93eb12

 hash('the quick brown fox jumps over the lazy do')
6186ce3119913cfabfe4b7952ba765b132948dd2

A couple of examples showing other hashes

 hash('the quick brown fox jumps over the lazy dog','md5')
77add1d5f41223d5582fca736a5cb335
 hash('the quick brown fox jumps over the lazy dog','sha-2')
05c6e08f1d9fdafa03147fcb8f82f124c76d2f70e3d989dc8aadb5e7d7450bec

A point to make about hashes is that even a tiny change in the input completely changes the output in
very hard to guess ways. This is what makes them so useful in e.g., security. A very common use is to
generate a password in an application and store the hash of it. This means only the user has the actual
password and when presenting it, the hash is recomputed and checked.

Here is an example of using every hash by passing in the list of names of them

 print(hash('asd', constants().hashes),55)
 md2 : cc470f0b5f04e543889629a01218291f
 md5 : 7815696ecbf1c96e6894b779456d330e
 sha-1 : f10e2821bbbea527ea02200352313bc059445190
 sha-2 : 688787d8ff144c502c7f5cffaafe2cc588d86079f9de8
 8304c26b0cb99ce91c6
sha-256 : 688787d8ff144c502c7f5cffaafe2cc588d86079f9de8
 8304c26b0cb99ce91c6
sha-384 : 91389ee5448e9d7a00f2f250e3d83beff18f1177a04bd
 0a2019c27b0493bfa072130dfd1625c7b835d0bb00889
 5272f8
sha-512 : e54ee7e285fbb0275279143abc4c554e5314e7b417eca
 c83a5984a964facbaad68866a2841c3e83ddf125a2985
 566261c4014f9f960ec60253aebcda9513a9b4

head

Description
Find the starting part of a string up to a given marker

Usage
head(target, stopChars{, is_regex})

Arguments
target - a string or stem of strings

stopChars - a string or stem of string of places to stop, or a regex that determines that.

is_regex - (optional) if true then all matching is done with the regular expression. Default is false.

Output
The part of target up to the stop character, i.e., the head of each string. If the stopChar is not found,
the empty string is returned.

Example
Here is taking the head of each element in a list:

 head(['bob@foo', 'todd@foo', ‘ralf!baz’], '@')
[bob,todd,]

This returns everything in each string up to the @. Since there is no @ in the last string, the enpty
string is returned for the last element. If you specify that the expression is a regex, then the effect is to
split at the regex and return everything up to it. Note that this means that non-matches are returned as
empty strings too:

 a.bob := 'bob@foo.bar'
 a.todd := 'todd@fnord.baz'
 a.x := 'TOM@Foo.bzz'
 head(a., '@f', true)
{
 bob:bob,
 x:,
 todd:todd
}

mailto:'todd@foo

i
See identity

identity

Description
This simply returns its argument. It is the identity function

Usage
identity(x)
i(x)

Arguments
x - any valid QDL expression or value.

Output
x (the input)

Examples
This is extremely useful in complex expressions to organize stem indices and such. It gives a way use
only function notation. Consider

 n(3).n(4).n(5).i(0)
0

This evaluates from right to left, so i(0) returns the index of 0 and as it marches backwards, each of the
indices function – which return the integers from 0 to n-1 – does the same.

&import

include_keys

Description
Take a stem, a. and a list of indices, list. and return the values of a. that have the same indices as list.

Usage
include_keys(var., list.)

Arguments
var. – a stem

list. - a list of keys. These will be the keys of the result, var. will supply the values.

Output
A stem with the keys from the list. and the corresponding values from the var.

Examples
 a.rule := 'One Ring to rule them all';
 a.find := 'One Ring to find them';
 a.bring := 'One Ring to bring them all';
 a.bind := 'and in the darkness bind them';

 list.0 := 'rule';
 list.1 := 'bring';

 say(include_keys(a., list.));
{
 bring:One Ring to bring them all,
 rule:One Ring to rule them all}

index_of

Description
This finds the position of the target in the source. If the target is not in the source, then the result is -1.

Usage
index_of(source, snippet{,caseSensitive})

Arguments
source – a scalar or stem variable.

snippet – a scalar or stem variable.

case_sensitive – (Optional) a boolean that if true will check for case and if false will check against
the arguments as all lower case.

Output
if both are strings, the result is the first index of where the snippet starts in the source. If one is a stem
and the other a scalar, the result is conformable to the stem and the operation is applied to each element
of the stem. If both are stems, then only corresponding keys are checked.

Examples
 sourceStem.rule := 'One Ring to rule them all';
 sourceStem.find := 'One Ring to find them';
 sourceStem.bring := 'One Ring to bring them all;
 sourceStem.bind := 'and in the darkness bind them';

 targetStem.all := 'all';
 targetStem.One := 'One';
 targetStem.bind := 'darkness';
 targetStem.7 := 'seven';
 index_of(sourceStem., targetStem.);
{bind:11}

i.e., it returns a stem variable, which has one entry, the common key and the index, so darkness is
found starting at index 11 in sourceStem.

indices

Description
Return all the indices or keys in a stem or restrict to the keys for a given axis.

Usage
indices(arg.{,axis})

Arguments
arg. - the stem whose keys will be returned

axis - (optional) the axis for the keys. If it is missing, the zero-th axis will be assumed, making this
identical in function to list_keys(arg.)

Output
A stem whose elements are the keys. If axis 0 is requested, the stem will be just a list of indices. If
other axes are requested, the stem will be stem indices. This is also a great way to get a table of
contents for a generic stem, though it is often simply too verbose for things like a rectangular array
(e.g. a matrix) where are the indices are predictable.

Examples
Remember that

a.p.q . . . r == a.[p,q, . . . r]

And the list on the right hand side is called a stem index. In this example we create a list and show
what the set of indices looks like.

 a. := [;5]~n(2,3, n(6))
 a.
[0,1,2,3,4,[0,1,2],[3,4,5]]
 indices(a., 0); // get the first axis
[0,1,2,3,4]
 indices(a., -1); // get the last axis
[[5,0],[5,1],[5,2],[6,0],[6,1],[6,2]]
 a.[6,2]
5

info

Description
Get various bits of system information in a stem.

Usage
info([name])

Arguments
None – a stem consisting of all properties

name – If a single property name is specified, that is returned or an empty string if the property is
undefined.

Output
A stem with various bits of system information. This will vary from installation to installation.

Examples

 say(info(), true)
{
 system: {
 processors:8,
 initial_memory:479 MB,
 jvm_version:1.8.0_261
 },
 os: {
 name:Linux,
 version:5.4.0-48-generic,
 architecture:amd64
 },
 user: {
 home_dir:/home/ncsa,
 invocation_dir:/home/ncsa/dev/ncsa-git/security-lib
 }
}

The major bits of this are

• qdl_version = information about the currently running version of QDL and how it was built.

• user = information about the user, such ash their home directory

• boot = information the system used to boot itself.

• os = information about the current operating system QDL is running under and

• system = information about the computer system itself, such as the number of processors, the
current java virtual machine version etc.

• lib = standard extension classes, such as http or database.

Getting a single property.
 info('os.name')
Linux
 info().'os.name' ; // Since it is a stem, you can do this too.
Linux

info() values
Not all of these may be available, depending on various combinations of hardware and systems.

Name Description
user.home_dir The home directory for the user in the ambient operation system
user.invocation_dir The directory from which QDL was started.
system.initial_memory Amount of RAM allocated to QDL at system startup. Depending on

the system, more may be allocated as needed
system.jvm_version The version of the Java virtual machine that is running QDL
system.processors The number of CPUs that are capable of being used by QDL.
os.architecture The architecture (underlying hardware info) for the current operating

system
os.name The name of the operating system
os.version The current version of the operating system
qdl_version.version The actual version of QDL you are running.
qdl_version.created_by The user that compiled this version of QDL
qdl_version.build_jdk The version of the JDK under which this version of QDL was

compiled.
qdl_version.build_nr The build number for this version of QDL
qdl_version.build_time The time stamp when this version of QDL was built
boot.qdl_home The home directory set for QDL. Any relative file operations are

resolved against this
boot.boot_script Path to any boot script that was be run on start
boot.cfg_file The configuration file that was used
boot_cfg.name The name of the configuration in the configuration file
boot.log_file The file used for logging

boot.log_name Entries within the boot file are prefixed with this so they can be
searched for.

boot.server_mode_on Is this running in server mode?
lib.* name of a supplied Java module.

Example. Loading the HTTP module
To get a list of all the standard java modules, issue

 info('lib')
{
 http:edu.uiuc.ncsa.qdl.extensions.http.QDLHTTPLoader,
 db:edu.uiuc.ncsa.qdl.extensions.database.QDLDBLoader
}

(There may be more of these.) Here there are two modules in this distro, one for http access and one for
db access. To load one of these, e.g. the http library, issue

 q:=load(info('lib').'http', 'java')
 q
qdl:/tools/db

You can now import this as needed.

 http := import(q)

input_form

Description
This will return the input form, i.e., what you would enter at the command line, of a variable, module,
function or expression. This is effectively the inverse function for execute.

Usage
input_form(fq_module_name)
input_form(variable{,pretty_print})
input_form(function, arg_count)
input_form(expression)

Arguments

For variables, this is the name, e.g. foo. For modules, this must be fully qualified like
my_alias#baz#fnord. If the flag pretty_print is true then print it out with indenting, otherwise it will
end up on a single, possibly very long line. Expressions will be evaluated and the result will be
converted to input form.

For modules, it is a string that is either the alias or the main module. Note that you can get the input
form for a module that has been imported, but you must load it to print out individual functions (since
these can be redefined by you.) For Java defined modules, there is no source, you simply get the class
name.

For functions, this is the name plus you must supply the number of arguments. Note that for Java-
defined functions, there is no source, you simply get the class name.

Output
A string that can be interpreted to yield the original argument. Note however, that the result is what is
needed, but is not identical. The examples should make this clear and why this is a good way to do it.
Generally variables have their content returned (since you probably want to work with that) and
modules or functions have their complete definitions returned (since you probably want to put it into an
editor, e.g.).

Caveat: If you have an alias and a variable with the same name, input_form of a single argument will
return the module. To get the variable, use the dyadic version with a boolean second argument.
Generally though you should not have variables and aliases that are indistinguishable since that can
lead to confusion.

Example: A variable
 a. := [2,4,6]~'a'~234~(-1.23)~false
 b := input_form(a.)
 b
[2,4,6,'a',234,-1.23,false]

This result is a string.

 input_form((543/11)^10)
8.5915484651856E16
 input_form('abc' + substring('pqr',0,10,'.') + ' foo')
'abcpqr....... foo'

In this case, the expressions are evaluated and the input form is returned.

Example: using input_form and execute
So how to use this with, say, execute? Taking a. as per above:

 a. := [2,4,6]~'a'~234~(-1.23)~false
 execute(input_form(a.))
[2,4,6,a,234,-1.23,false]

Example:A function
If you define a function such as

 f(x)->x^3+3*x^2 +x - 1

You can recover the input form as

 input_form(f, 1)
f(x)
->
x^3+3*x^2+x-1;

Note that this is not exactly what was typed, but is equivalent.

Example: A module
Let us define and import a module

 module['a:a','a']body[foo := 'abar';define[f(n)]body[return(n+1);];];
 module_import('a:a');
a
 input_form(a)
module['a:a','a']body[foo := 'abar';define[f(n)]body[return(n+1);];];

You may also print out the function definition:

 input_form(a#f, 1)
define[
f(n)
]body[
return(n+1)
;
];

Note that this is not quite the same as the original. What always happens is that the source is picked up
after the parser reads it (this is how it gets into QDL) and whitespace such as blanks and linefeeds are
not considered essential, hence may change.

insert

Description
Insert a given string at a given position of another string

Usage
insert(source, snippet, index)

Arguments
source – the string to be updated

snippet – the string to insert

index – the position in the source string to insert the snippet

Output
The updated string.

Examples
 insert('abcd', 'foo', 2)
abfoocd

This also works for stem variables

insert_at

Description
Insert a sublist into another list, starting at a given point. All the indices in the target list are shuffled to
accommodate this.

Usage

insert_at(source.{, start_index, length}, target.{, target_index});

Arguments
source. = the stem that is the source of the copy.

start_index = the index in the source where the copy starts. Default is 0

length = how many elements to copy, default is from start_index to end

target. = the target stem of the copy

target_index = the index in the target that will receive the copy. default is 0. Note that any elements
already in these locations will be moved. If you need to overwrite elements, consider using the copy
command.

Examples
 source. := [;5] + 20
 target. := [;6] - 100
 insert_at(source., 2, 3, target., 4)
[-100,-99,-98,-97,22,23,24,-96,-95]

So this inserted 3 elements from the source starting at index 2 in the source and placed them at index 4
in the target, moving everything else.

interpret

Description
Send a string to the interpreter and evaluate it.

Usage
interpret(string | stem.)

Arguments
string – the string to be interpreted, i.e. run. This must be a valid QDL statement or it will fail. If there
is not a final semi-colon, it will be added.

stem. - a list stem of strings. These will be executed sequentially.

Output
If the last statement has a result, it will be returned of or a null if the last statement has no result.

Examples
 execute('2 + 2');
4

 execute('say(\'abc\' + \'def\');');

abcdef
abcdef

Here you get two results if the current workspace is set to print results, since you are telling it to say the
value and it is returning it.

 execute('var:=3')

 var
3

Another use of this is to store things as a type of quick serialization for later use:

my_stem. := . . . // lots of stuff
file_write(my_file, input_form(my_stem.));
// then later
my_other_stem. := execute(file_read(my_file));

is_defined (,)∃ ∄

Description
A scalar-only function that will return if a given variable is defined, i.e., has been assigned a value.

Usage
is_defined(var) or ∃var, ∄var

Arguments
var is the variable. Remember that stem variables end with a period if you are addressing the entire
thing.

Output
A boolean.

Examples
 a := 'foo';
 is_defined(a)
true

 is_defined(b)
false

 b. := make_index(4);

 b.∃
true

 is_defined(b.1)
true

 is_defined(b.woof)
false

 b.woof; // is this undefined?∄
true
 [a,b.,c] // check a stem of variables for existence∃
[true,true,false]

Note that if a stem is defined, then you can use this to check the elements as well.

is_function (,)∃ ∄

Description
Checks if a symbol is a function.

Usage
is_function(var , arg_count) or f arg_count ∃ or f arg_count∄

Arguments
var is the name of the function or stem of them.

argCount – This is the number of arguments that the function may accept or a stem of them.

Output
A boolean which is true if the function is defined in the current scope.

Examples
In this case, a function, f is defined in a module called mytest:functions

 import('mytest:functions');
 is_function('f',1);
true
 f 1; // same as previous example∃
true
 g null; // ∃ query if there are any functions, regardless of arg count, named g
false
 f 1[;4]; // ∃ Check if f is defined for several argument counts

[true,false,false,true]
 [f,g,h] 1; // check several functions∃
[true,false,true]
 [f,g] [1,2]// subsetting is on, check for f ∃ with 1 arg and g with 2 args.
[true, false]

is_list

Description
Determine if the argument is precisely a list. That means, that it is a stem with only integer indices.

Usage
is_list(stem.)

Arguments
stem. The stem to check

Output
A boolean that tells if this is a list.

Examples
 my_stem.help := 'this is my stem'
 my_stem.~ n(5)
[0,1,2,3,4]~{
 help:this is my stem
}
 is_list(my_stem.)
false
Why is this false? Because it has a non-integer index. The function tells you if the object is a list and
only a list. Compare with

 is_list([;10])
true

&is_null

&j_load

&j_use

join

Description
Join two stems along a given axis. This increases the number of elements on the axis.

Usage
join(x., y., axis)

Arguments
x., y. are stems and should be conformable.

axis - an integer stating which axis to use.

By axis we mean which index of the stem’s dimension. So in

a.p.q.r

a. means axis 0

a.p is axis 1

a.p.q is axis 2

See the examples below. The standard ~ operator is just a join along the default axis of 0, and operator,
~| (unicode 2241,) ≁ that will do the join along the last axis.

Output
The joined stem. Note that the dimension does not change, but the axis (which refers to the index of
the dimension) will. Easiest to look at the example below rather than describe.

Examples
Simplest is best.

 [;5]~[;5]
[0,1,2,3,4,0,1,2,3,4]

This joins the two stems along their zero-th axis and the number of elements on that axis is now 10.

A larger example
It is best to have a large example so you can see what is going on.

 q. := [[n(4), 4+n(4)],[8+n(4),12+n(4)], [16+n(5),21+n(5)]]
 w. := 100 + q.
 dim(q.)
[3,2,4]

 q.
[
 [[0,1,2,3],[4,5,6,7]],
 [[8,9,10,11],[12,13,14,15]],
 [[16,17,18,19,20],[21,22,23,24,25]]
]
 w.
[
 [[100,101,102,103],[104,105,106,107]],
 [[108,109,110,111],[112,113,114,115]],
 [[116,117,118,119,120],[121,122,123,124,125]]
]

So w. and q. have the same dimension. Invoking join without an axis means the join along the zeroth
axis. This means that the zeroth dimension will change:

 // also q.~w.
 z. := join(q.,w.)
 dim(z.)
[6,2,4]

 // * <--- You are here
 // z.i.j.k
 join(q.,w.,0)
[
 [[0,1,2,3],[4,5,6,7]],
 [[8,9,10,11],[12,13,14,15]],
 [[16,17,18,19,20],[21,22,23,24,25]],
 [[100,101,102,103],[104,105,106,107]],
 [[108,109,110,111],[112,113,114,115]],
 [[116,117,118,119,120],[121,122,123,124,125]]
]

result is list of combined lengths size(z.) == size(q.) + size(w.)

the second argument is treated as a list and just tacked on to the first.

 z. := join(q., w., 1)
 dim(z.)
[3,4,4]
 // * <--- You are here
 // z.i.j.k
[
 [[0,1,2,3],[4,5,6,7],[100,101,102,103],[104,105,106,107]],
 [[8,9,10,11],[12,13,14,15],[108,109,110,111],[112,113,114,115]],
 [[16,17,18,19,20],[21,22,23,24,25],[116,117,118,119,120],[121,122,123,124,125]]
]

z. has same shape, but z.k == q.k ~ w.k

This tacks all the first entries together

 z. := join(q.,w., 2)
 dim(z.)
[3,2,8]
 // * <--- You are here
 // z.i.j.k
[
 [[0,1,2,3,100,101,102,103],[4,5,6,7,104,105,106,107]],
 [[8,9,10,11,108,109,110,111],[12,13,14,15,112,113,114,115]],
 [[16,17,18,19,20,116,117,118,119,120],[21,22,23,24,25,121,122,123,124,125]]
]

z. now has size(z.i.k) == size(q.i.k) + size(w.i.k)

 z. := join(q.,w., 3)
rank error

A rank error happens if you exceed the actual entries of the stem.

A more concrete example
Let us say you wanted to create functions that produce pairs of values for a plotting program (such as
gnuplot). In QDL you could just create a function:

define[
 plot(@f(), x.)
][
 x. := n(size(x.),1,x.); // resize x to nx1 column vector.
 return(x.~|f(x.)); // note that x.~|f(x.) == join(x., f(x.), -1)
];

This evaluates whatever the function is on the column vector. The result is a join of the x. and f(x.)
along their last axis, so that inputs and outputs are together. This can be written very easily to a comma
delimited file (e.g.) or perhaps just dumped as a JSON string and the plotting program can then read it.
In QDL you generally describe what you need the data to do, such as here, make some values and glom
them together. See also the laminate function in the extension module.

keys

Description
Return a stem of the keys for a given stem variable.

Usage
keys(arg.{,scalars_only | var_type})

Arguments
arg. = A stem variable. Remember that the entire stem is referenced by just the head + “.”

scalars_only = (optional boolean) if true lists only the keys that are for scalars. If false, only the keys
for stems are listed. If this is omitted, all keys are returned.

var_type = (optional) The variable type as an integer. If this is specified then only indices with a
value of that type are returned.

Output
A stem of keys where every key has itself as the value.

Examples
Example. Let's say you have the following stem variable”

 sourceStem.rule :='One Ring to rule them all';
 sourceStem.find := 'One Ring to find them';
 sourceStem.bring := 'One Ring to bring them all';
 sourceStem.bind := 'and in the darkness bind them';

and you issue

 keys(sourceStem.)
{bind:bind,
 find:find,
 bring:bring,
 rule:rule}

Note that there is no canonical order to keys, so the keys to sourceStem. Can appear in any order in
the result.

This is extremely useful with e.g. the rename function. So you can get all the keys, change their values
and rename them.

Examples of filtering
Let us take the following example of a stem with various types of entries

 a. := ['a',null,['x','y'],2]~{'p':123.34, 'q': -321, 'r':false}
 keys(a.)
[0, 1, 2, 3]~{ p:p, q:q, r:r}

Returns every key. remember that the values for the variables types are in

 constants('var_type')
{
 boolean:1,
 string:3,
 null:0,
 integer:2,
 decimal:5,
 stem:4,
 undefined:-1
}

To get the filter keys for the boolean entries only

 keys(a., 1)
{r:r}

To get the null entries:

 keys(a., 0)
{1:1}

To get only the integers

 keys(a., 2)
{q:q,3:3}

To get only the stem entries (vs. scalar)

 keys(a., false)
{2:2}
 a.2 // just checking
[x,y]

How to get only the entries that are scalar valued

 keys(a., true)
{
 p:p,
 q:q,
 r:r,
 0:0,
 1:1,
 3:3

}

Again, part of the contract for this call is that there is no canonical ordering, since there cannot be for
stem keys generally.

An example to rename keys
Let us say we had the following stem with these keys (which were generated someplace else and we
imported, e.g., from JSON):

 b.OA2_foo := 'a';
 b.OA2_woof := 'b';
 b.OA2_arf := 'c';
 b.fnord := 'd';
 b.
{
 OA2_arf:c,
 OA2_foo:a,
 OA2_woof:b,
 fnord:d
}

The list_keys() command gives the following

 list_keys(b.)
[OA2_arf, fnord, OA2_foo, OA2_woof]

To rename all the keys so that any with the OA2_ prefix are changed, issue

 remap(b., list_keys(b.), list_keys(b.) - 'OA2_')
{
 arf:c,
 foo:a,
 fnord:d,
 woof:b
}

Example contrasting shuffle with rename_keys
This creates a list [2,9,16,23,30,37,44] of 7 elements. First we simple reorder them. Note that the
length of the left argument is 7 and that every index is represented:

 shuffle(2+n(7)*7, [6,4,2,5,3,1,0])
[44,30,16,37,23,9,2]

In the next example, we just rename key 0 (only index on right) to 15. The display is no longer with
square brackets because it is, properly speaking, no longer a list.

 rename_keys(2+n(7)*7, [15])
{
 1:9,

 2:16,
 3:23,
 4:30,
 5:37,
 6:44,
 15:2
}

To be exhaustive you can also use stem notation for the left side in this case, even though it is also a
list:

 rename_keys(2+n(7)*7, {0:15})
{
 1:9,
 2:16,
 3:23,
 4:30,
 5:37,
 6:44,
 15:2
}

kill

Description
Stop (aka kill) a forked process.

Usage
kill(pid)

Arguments
pid - an integer that is the unique process identification number returned from the fork function.

Output
There are two possible values. A 1 indicates success, a 0 indicates failure.

Examples
 kill(42)
1

Stops the process with pid 42. The result indicates that process has been successfully terminated.

lcm
See transcendental functions

&lib_entries

list_keys

Description
Return a list of the keys for a given stem variable. It allows masking by value type.

Usage
list_keys(arg.{,scalars_only | var_type})

Arguments
arg. = A stem variable. Remember that the entire stem is referenced by just the head + “.”

scalars_only = (a boolean) if true lists only the keys that are for scalars. If false, only the keys for
stems are listed. If this is omitted, all keys are returned.

var_type = (optional) The variable type as an integer. If this is specified then only indices with a
value of that type are returned.

Output
A list of keys where the new keys are cardinals and the values are the keys in the original stem. See
also the keys() function. The difference is that this is list but keys() returns the set of keys. This is useful
for reshuffling indices.

Examples
Example. Let's say you have the following stem variable”

 sourceStem.rule :='One Ring to rule them all';
 sourceStem.find := 'One Ring to find them';
 sourceStem.bring := 'One Ring to bring them all';
 sourceStem.bind := 'and in the darkness bind them';

and you issue

 list_keys(sourceStem.)
[bind,find,bring,rule]

And to just list the scalar indices (note that strings are treated as scalars):

 list_keys(sourceStem., true)
[bind,find,bring,rule]

If you tried to list just the keys for the stems, you would get an empty list back:

Note that there is no canonical order to keys, so the keys to sourceStem. Can appear in any order in
the result.

Example:Masking
Let us say you issued a complex statement using mask(), like

 ww. := random(4, 8)
 ww.
[
 5652543194030156086,
 6244984374016755256,
 3047862711518522798,
 2011719346505809871
]
we need to grab the one element that has remainder 11 after division by 17 (this generates an example
where one of the ones in the middle is what we want) so we use mask():

 mask(ww., mod(ww., 17)==11)
{
 3:2011719346505809871
}
 which dutifully informs us that the 3rd element is the one we want. To actually grab this, you can use
list_keys() and stem resolution:

 k. := list_keys(mask(ww., mod(ww., 17)==11));
 ww.k.0
2011719346505809871

Another example: looping
Let us say that you got the above key set. How might you use it? In a loop:

while[
 for_keys(j, var.)
]do[
 sourceStem.var.j // … do stuff with this
];
which loops through all the values in source stem.

Another example: getting only values of a certain type.
 q. := {'a':['p','q'],'b':'r', 'c':false,'d':123.345,'e':42}
 list_keys(q., 2); // 2 is the variable type for integers
[e]
Meaning, that this is a list for the keys (there is one here) of integer-valued entries in the stem.

Note:The following are equivalent

 list_keys(q., false)
[a]
 list_keys(q., 4)
[a]

So it is possible to, e.g. loop over only the decimal elements in a stem.

ln
See transcendental functions

&load

&loaded

log
See transcendental functions

logger
See debugger

mask ()⌆

Description
Take a boolean mask of a stem.

Usage
mask(target., bit_stem.)

Arguments
target – the stem variable to acted upon.

bit_mask – a stem variable with the same keys as target and boolean values. If the value is true then the
entry is kept in the result and if false it is not. Note that if there are missing keys then these will not be
returned either (so subsetting is still in effect), essentially making them equivalent to false entries.

Output
A subset of the target.

Examples
 header.transport := 'ssl';
 header.iss := 'OA4MP_agent';
 header.idp := 'http://oa4mp.org/idp/secure';
 header.login_allowed := 'true';
 // case insensitive match
 header. := mask(header., !contains(header., 'oa4mp', false));
 // This removes every entry containing 'oa4mp'
 say(size(header.);
2

max

Description
Compute the maximum of two numbers

Usage
max(a,b)

Arguments
a - a number or stem of numbers

b - a number or stem of numbers

Output
The largest of the two arguments.

Example.
 max(3,2.5)

3
 max([-2,5],[2,4])
[2,5]

min

Description
Compute the minimum of two numbers

Usage
min(a,b)

Arguments
a - a number or stem of numbers

b - a number or stem of numbers

Output
The smallest of the two arguments.

Example.
 min(3,2.5)
2.5
 min([-2,5],[2,4])
[-2,4]

mkdir

Description
Make a set of directories in a file system

Usage
mkdir(arg)

Arguments
arg -- a path. All of the intermediate paths will be created as needed.

Output
A boolean, true if the operation succeeded and false otherwise.

Examples
An example of trying to make a directory in a read-only VFS will fail:

 mkdir('qdl-vfs#/zip/foo')
Error: You do not have permissions make directories in the virtual file system

Making a directory in a system that is writeable works fine:

 mkdir('qdl-vfs#/pt/woof-123')
true

mod

Description
Compute the modulus, i.e., the remainder after long division, of two integer. Since there are currently
only integers as allowed numbers, this is needed in cases where the remainder is required.

Usage
mod(a,b)

Arguments
a and b may be either scalars or stems.

Output

Examples
To compute the simple remainder

 say(mod(27,4));
3
And sure enough 27/4 = 6 with a remainder of 3.

A stem example. Computer the remainder of a bunch of values

 a.0 := 11;
 a.1 := 20;
 say(mod(a.,4));
[3,0]

In this case, since 20 is evenly divisible by 4, the modulus (aka remainder) is 0.

Another example
Here is how to make 5 random integers in the range of -18 to 20:

 1 + mod(random(5),20)
[-5,-12,13,-2,-14]

 (The random numbers are signed so the smallest using the mod function could be -19, adding 1 gives
us -18.)

Or if you prefer all positive numbers in the range of 1 to 20:

 1 + abs(mod(random(5),20))
[16,11,16,2,20]

module_import

module_load

module_path

module_remove

n

Description
Make a list of indices. This is very useful in conjunction with looping. Note that the one simple case

n(p) == [;p]

for 0 < p an integer. n, however, allows you to make higher dimension stems or reshape them.

Usage
n(arg0{,arg1,arg2,...}{,fill.});
n(dim.{,fill.});

Arguments
arg_k (first form) are numbers. This will be the size of the resulting index set.

dim. - (second form) a list of dimensions.

fill. - (optional)stem of scalars that will be used as values cyclically. Note that even if this has a
single entry, it must be a stem.

Output
A list, i.e., a stem variable whose keys are the integers, and whose entries are either the same or the
elements of fill. re-used cyclically.

Examples
Simple examples.

 n(5)
[0,1,2,3,4]
 n(5,[2,3])
[2,3,2,3,2]
 n(2,3)
[
 [0,1,2],
 [0,1,2]
]

 n([2,3],[;6])
[
 [0,1,2],
 [3,4,5]
]

In the second example, the result is a 2 rank array aka a 2 x 3 matrix of integers. Since no fill was
specified, the default of the last argument extended holds. Here is an example of a 2x3x6 array filled
with zeros.

 n([2,3,6],[0])
[
 [
 [0,0,0,0,0,0],
 [0,0,0,0,0,0],
 [0,0,0,0,0,0]
],
 [
 [0,0,0,0,0,0],
 [0,0,0,0,0,0],
 [0,0,0,0,0,0]
]
]

Vector valued function.

 f(x) -> (x^2+1)/(x^2+2);
 f(1+n(5)/5)
[
 0.666666666666666,
 0.709302325581395,
 0.747474747474747,
 0.780701754385964,
 0.809160305343511
]

In this case, a function is defined and evaluated at 1, 1.2, 1.4, 1.6, 1.8.

How this relates to looping.

x. := n(size(myStem.));
results in

[0,1,2,...]

So a common pattern is

while[
 for_keys(j, x.)
]do[
 myStem.j := // other stuff
 // myStem.x.j is an equivalent reference.
];

Example: Looping over scalars and stems
A common issue is the you may have a stem some of whose elements are scalars and some are stems.
writing a loop seems to require that you have knowledge about every index. This is not needed with
for_keys since the keys are retrieved. This is especially useful in lists. IN this example, there is a stem,
a. some of whose entries are scalars (strings) and some are 3 element random integers. Here is how to
loop over the elements:

 while[for_keys(j,a.)]do[say(a.j);]
UiVih_S-Act_0mclp7i0CQ
[8528928954721892791, -9103201823511602727, -8452824104954706854]
XkiEEZ1g297TfZY3ItjL5w
[5095335425002685458, 380662481390939243, -2302353563657105155]
FUKe27vv56w8-lahY2InNA

&names

nroot
See transcendental functions

numeric_digits

Description
Set or query the precision for decimal numerical operations. Since decimals do not completely
represent fractions, this sets the precision (i.e., number of significant digits) used.

Note: significant figures start at the left of the number. So if we had precision of 2, then 1.20 and 1.234
would be equivalent. This is not the number digits to the right of the decimal point. Consider the
following snippet for a function h(x) defined in terms of transcendental functions:

 numeric_digits(15)
50
 h([1,2.3])
[
 -10.0676619957778,
 -1.36000254004806800000000000000
]

Both of them have 15 significant digits, but the second value has a lot more decimals. Since h(x) is
defined in terms of transcendental functions, the extra values are artifacts of approximation.

Usage
numeric_digits([new_value])

Arguments
new_value (optional) if supplied, the new value for all non-exact decimal operations.

Output
The current value.

Caveat.
Make sure your precision matches your needs. Consider this

 9223372036854775806 + 3
9223372036854780003

Which cannot be right. What gives? Since the precision is 15 and the number you gave is 18 digits
long, what happened is that the number was rounded to 15 places, then 3 was added. So the value is
right … to 15 places. If you want to see all of your digits, you need to set the precision correctly:

 numeric_digits(25)
15
 9223372036854775806 + 3
9223372036854775809

Examples
The default is 15 digits. Set the value to 50:

 numeric_digits(50)
15
 4^0.19
1.3013418554419335668321600491224611591208423214517

Set the number of digits to 100 and re-evaluate this expression

 numeric_digits(100)
15
 4^0.19
1.301341855441933566832160049122461159120842321451727432949734773315583318806133404
306182838299702735

os_env

Description
Get or list the environment variables for the system. This allow QDL to be called from a script and
have access to the current system environment, such as in bash as $PATH, $HOME, etc. The
difference is that you do not need to supply the leading “$”. If you operating system is case sensitive,
then the variables will be too, so 'path' and 'PATH' may or may not return the same value. This is OS
dependent.

Usage
os_env([arg0, arg1,…])

Arguments
No argument means to list all of the environment variables.

Arguments are the names of properties in the ambient operating system environment. If a single
argument is given, then a single value is returned. If a list of them is given, then a stem of them is
returned. Note that any keys are encoded.

Output
Either a stem or a single string. If a property is not found an empty string is returned (single argument).
If the property is not found in a list, then that property is not returned. This is extremely useful when
writing scripts and allows for seamlessly invoking them. Set any values you need in, e.g., a shell script
and then access them in QDL.

A final note is that in server mode, all requests to get information about the system will only return an
empty string. script_path

Examples
 os_env('HOME')
/home/userName

In this case, the request is for the user's home directory and that is returned.

Another example
This parses the path on unix systems:

 tokenize(os_env('PATH'),':')
[/usr/local/sbin,/usr/local/bin,/usr/sbin,/usr/bin,/sbin,/bin,/usr/games,/usr/
local/games,/snap/bin]

So each element of the list is a path component.

pi
See transcendental functions

pick

Description
A function that chooses elements of the argument based on a boolean valued function.

Usage
pick(@f, arg)

Arguments
@f - any boolean valued function that will accept the elements of the argument. Valence is 1 or 2.

arg - any argument, stem, set or scalar.

If the valence of @f is 1 then the function gets the current value of the element. If the valence is 2, then
the arguments are key, value.

Output
A result conformable to arg whose elements satisfy the pick function. If the argument is a scalar, so is
the result (and will be null if the pick function returns false). Note that this does not alter the argument.
Any boolean results for @f that are false and not included.

Example
 pick((v)-> 7<v<20,[|pi(); pi(3) ; 10|])
{2:9.33374465952533, 3:12.4298206624931, 4:15.52589666546087, 5:18.62197266842864}

In a list of 10 numbers between π and π^3 which are between 7 and 20?

 pick((k,v)-> 0<(v^2/(k^2+1))<3/2,[1;10])
{0:1, 4:5, 5:6, 6:7, 7:8, 8:9}

Sets criteria for selecting elements from the given list. (k,v) are the key (i.e. index) and value.

An example on sets. Since there is no concept of a key or index, you can only have a pick function
based on the value:

 pick((v)->'a'<v, |^random_string(10,10))
{dSBREElOapucxQ,mW_29aEYR_MyaQ,KEAIL-qoKm8a4g}

This makes some random strings and grabs only those that have a character of 'a'. Note that the result is
also a set.

print

Description
This will take the stem (or list) and format it in columns according to

various parameters which may be specified in the format. argument.

Usage
print(arg.{,format. | width})

Arguments
arg. - stem to be formatted

format. - stem of formatting parameters

width - the total width of the display

Table of values for format.

Name Default Description
width -11 The total width the output should fit in. The values may be

wrapped as needed. A value of -1 means the line length is
infinite.

keys -- list of keys that are a subset to be printed

sort true Display has keys sorted
short false Restrict the value displayed to a single line within the given

width.This is useful for large values to get a quick overview
string_output true If true, then the output is a single formatted string. If false, the

output is a stem of formatted lines.
indent 0 How much to indent the entire output from the left

Output
Output is columnar and of the form

 key0 : value0

 key1 : value1...

Where the values may span multiple lines. The short option will truncate output to fit on a single line,
with possible trailing … to show truncation.

Caveat: This is intended for displaying information in tabular format for reports, e.g. and is not a
general purpose stem formatting function. You would format individual stems with this. The major
reason is that a truly complex stem might end up being simply enormous. Making if format means
controlling space and nested stems quickly exhaust every display device. This function, however, gives
a great building block to make your own specific stem viewer.

Examples
 print({'a':'woof', 'fnord':'warf'})
 a : woof
fnord : warf

 print(pi()^[;7])
0 : 1
1 : 3.14159265358979
2 : 9.86960440108934
3 : 31.0062766802997
4 : 97.4090910340020
5 : 306.019684785280
6 : 961.389193575298

 print({'first':random_string(64), 'second':random_string(64)}, {'width':50})
 first : WIzEQR3-Og0i9c-3mh-LuQAfx2docUkTF3MOHVwXi
 v-QcASqN-YOrRAdEbpEErAfFy9rPEeruPEPK1zIW0
 F4vA
second : zLO5uMm2Vqt9vXIekmEw-_3BzSxDFz5Tbh8dPrBx2
 5I55ncS8rcvfSzYObymSB-tiAJ9gLjHCN6QRCJVdn
 OSBg

Here long strings are formatted with a total display width of 50 characters. To show a

short version (restricting the value to a single line and truncating it if needed),

set the short flag to true:

 print({'first':random_string(64), 'second':random_string(64)}, {'short':true,
'width':50})
 first : FLYj-L8HA2PUfuyw9Z09qdQOaE7x7w3BjzSPQTFiilF2...
 second : ydViwpcAO2mNCkAjvepnOlYAzvavAtVn2LVp3ofDAs4t...

Note that this only works at the top level and embedded stems are

printed in their to_string format.

 print({'p':{'a':'x','b':'y'},'q':{'c':'z','d':'w'}})
p : {a:x, b:y}
q : {c:z, d:w}

query

Description
Query a stem using the JSON Path language. This is found in the JSON Path specification. In large and
very complex stems, it is sometimes necessary to search the stem. JSON Path is a very clean way to do
this and works extremely well with QDL.

Usage
query(arg., query_string{, return_indices})

Arguments
arg. - the stem that is the object of the search.

query_string - A JSON Path query. The specification is fully supported

return_indices - (optional) boolean to return the indices only, no results. Default is false.

https://tools.ietf.org/id/draft-goessner-dispatch-jsonpath-00.html

Output
A stem either of the results themselves or, optionally, the indices where the results reside.

Examples
A very, very simple minded example is here.

 a. := {'p':'x', 'q':'y', 'r':5, 's':[2,4,6], 't':{'m':true,'n':345.345}}
 query(a., '$..m')
[true]
 ndx. := query(a., '$..m',true)
 ndx.
[[t,m]]
 a.ndx.0; // same as a.t.m
true
// Alternately, to just change the found indices into a simple list, use remap
 remap(a., ndx.)
[true]

So in this case we have a simple example. The query uses $.. which tells it to simply start searching
until it hits a key of m someplace. The first query just returns the result there – always a list with a
single value. The second query with the optional flag set to true returns the index for the value, here
[t,m]. An example of accessing the value of the stem using the index is shown. More compactly,

 a.query(a., '$..m',true).0
true

raise_error

Description
Raises an error conditions and passes control to the catch block. Note that you may raise errors outside
of a try[. . .]catch[. . .] block, but while it will interrupt processing, that’s about it. This is
useful in function definitions where you e.g., check the arguments and raise an error if there is a bad
one. You don’t want to catch that inside the function because you are communicating it to whatever
called your function.

Usage
raise_error(message, [code, [state.]);

Arguments
message a human readable message that describes this error

code a user-defined integer that tells what this code is. The value of -1 is reserved by the system for
system errors. If you raise an error but do not set it, it is by default 0. You may use any other value you
like, though as a convention stick to non-zero integers. This reserved value is available in constants()
under error_codes.system_error and error_codes.default_user_error resp.

state. A user-defined stem that holds useful information. Nothing is returned by default and this is
wholly user created. If you wish to pass along state, you must specify a code as well.

Output
None directly. The values are set to error_message and error_code (if present) and are accessible in
the catch block. Typically, you define the error code and look for it in the catch block.

Examples
try[
 if[3 == 4]then[raise_error('oops', 2);];
]catch[
 say(error_message);
 switch[
 if[error_code == 2]then[...];
 // maybe a bunch of other errors
]; // end switch
]
oops

Use in a function

define[
 my_func(x)
][
 if[x <= 0][raise_error('my_func: the argument must be positive', 1);];
 // ..rock on
];
 Since there is no catch block per se you can use any return code you like. The use of this is that if you
were to make a call like

my_func(-2)^.5

an error would get raised in my_func rather than perhaps someplace else. This lets you control where
exceptions were raised.

random

Description
Generate either a single signed 64 bit random number (no argument) or a list of them.

Usage
random([n])

Arguments
number (optional) -- the number of random values you want to generate.

Output
If there is no argument, a single random 64 bit number. If there is a number, n, supplied. Then a stem
variable with indices 0,1,… n-1 containing 64 bit integers.

Examples
 say(random());
8781275837297675785

 random(5)
[-7902203766022328986,-60507163193724589,
3266880166912262770,-895740002133721315,-181676033275893516]

Here is an example of generating a list of 10 random numbers between 1 and 10:

 x. := 1+ abs(mod(random(10),11));
 say(x.);
[6,5,4,1,8,6,6,8,8,9]

random_string

Description
Generate a random string. There are random strings and there are random strings. I mean is that this
will be pseudo-random (really best a computer can do) and it will be the correct number of bytes. The
result will be base 64 encoded. See note in encode about length of strings. Note especially that the first
argument is the number of bytes you want back, not the length of the string.

Usage
random_string([n{,count}])

Arguments
n (optional) – gives the size in bytes. The default is 16 bytes = 128 bits.

count (optional) – the number of strings to return. If this is larger than 1, then you will get a stem back.

No arguments returns a single random string that is the default size.

Output
A base 64 string that faithfully (url safe) encodes the bytes.

Examples

 random_string()
Kb5NlgFgTRDWp_qW7MyUEA

Returns a random string 16 bytes = 32 characters long (the default). Note that this is 22 characters long
as 16*4/3 = 21.33333 rounds up to 22.

 random_string(32)
uf04ljhu90899QPHOMWsywxLafjsieU2nRtdeffhSvY

Returns a single string that is 32 bytes = 43 characters long.

 random_string(12,4)
[lHZhFtAYlSR-85pU,GWkbC3q5iNRFNBdT,Yp6M6Bir1JTArEuF,9CaQ2knCaiSp11-_]

Returns 4 strings that are 12 bytes = 16 characters long.

An example where the result needs to be a hex string.
In this example, we need a random, hex string that is 16 bytes long. Here's how to do it.

 encode(decode(random_string(16)),16)
efbfbdefbfbd3e7374efbfbd22efbfbdefbfbd06efbfbd10c69d2178

rank

Description
Get the rank of a stem, i.e., the number of independent axes.

Usage
rank(arg.)

Arguments
arg - a list stem or scalar.

Output
The rank, which is equal to the size of the dimension vector. If this is a arg scalar, the result is 0.

Example
 rank([;5])
1

Since there is one independent axis for a vector.

reduce ()⊙

Description
Apply a dyadic function pairwise to each member of a list, returning the final output only. This operates
on the zero-th axis by default. This may be applied to sets and generic stems

Usage
reduce(@f, arg)
reduce(@f(), list.{,axis})

Arguments
@f() - reference to a function or operators

First form:

arg - A generic stem (so has non-list entries), a set or trivially a scalar.

Second form:

list. - the list to be operated upon. Since list reduce implies ordering, a list is needed rather than a
general stem (which has no canonical ordering).

axis - (optional) which (signed) axis. Default is 0. If added to the first form, it is ignored.

Output
A scalar in all cases.

Examples
 reduce(@*, {1,2,3,4,5}
120

This applies multiplication to every element in a set. Similarly, we can apply a dyadic operator to every
member of a generic stem:

 reduce(@*, {'a':2, 'b':4, 'c':6})
48

Once more, this will apply the operator to every entry in a set or stem. Do be careful of non-
commutative functions since there is no control of the order in which entries are processed.

Is a list equal to itself?

 reduce(@&&, n(5) == n(5))
true

This is equivalent to applying the and operator, && between each element of the argument. In this
case, the result is true if and only if each element of the list is true. See also the expand function
which returns the list of intermediate results.

In higher dimension stems, you can use the axis function to specify a different axis. For instance, if

 say(x. :=[[2,3],[-1,-1]], true)
[
 [2,3],
 [-1,-1]
]
if you apply reduce, this adds to elements together:

 reduce(@+, x.)
[1,2]

which is the same as issuing

 reduce(@+, transpose(x.. 0))

If you specify the last axis (which are the columns) then the addition is column is added:

 reduce(@+, transpose(x., -1))
[5,-2]

Example on a generic stem.
If we have the following stem

a.'foo' := 'abctest0';
a.'bar' := 'abctest1';
a.'baz' := 'deftest2';
a.'fnord' := 'abdtest3';

How can we check if any of these start with abc? You should find out which satisfy your requirement
like this:

 -1 < index_of(a., 'abc')
{bar:[true], foo:[true], fnord:[false], baz:[false]}

Are any true?

 reduce(@||, -1 < index_of(a., 'abc'))
true

remap

Description

Usage
remap(source., indices.);
remap(source., old_indices., new_indices);

Arguments
Dyadic case:

source. = the stem list to take a subset of

indices. = stem that determines which elements to take

Note that the contract is

out. := remap(source., indices.);

and indices. is of the form

indices. := {k_0:v_0, k_1:v_1, . . ., k_n:v_n}

so that the result fulfills

out.k_j := source.v_j

A very useful function to learn about is m_indices in the extensions module, which makes it
extremely easy to create multi-indices for remap.

Triadic case:

source. = the stem list to take a subset of

old_indices. = stem that determines which elements to take

new_indices. = stem that determines the indices of the result

Note that the contract is

out. := remap(source., old_indices., new_indices.);

old_indices. := {k_0:v_0,. . . , k_n:v_n}
new_indices. := {k_0:r_0,. . . , k_n:r_n}
out.r_j == source.v_j

Output
A stem with values remapped by the argument(s). This does not alter source.

Examples
Subset can also be used with higher rank stems. Remember that for a stem a.,

 a.[p,q] == a.p.q

This lets you select like so:

 a. := n(3,4,n(12))
 remap(a., [[0,1],[1,1],[1,1],[1,1],[2,3]])
[1,5,5,5,11]

Example of creating another array from a given array.
This function returns a more or less linear set. Rather than have some extremely complex way to
specify what the resulting shape is going to be, you should take the result of this and use it with, other
functions to get what you want.

 b. := n(4,5, 3*n(20)-7)
 b.
[
 [-7,-4,-1,2,5],
 [8,11,14,17,20],
 [23,26,29,32,35],
 [38,41,44,47,50]
]
 n(2,2, remap(b., [[1,1],[3,2],[1,-1],[3,4]]))
[
 [11,44],
 [20,50]]

Finally, remember that this works on the zeroth axis unless otherwise specified.

 remap(b., [1,2])
[
 [8,11,14,17,20],
 [23,26,29,32,35]
]

Examples comparing integer and stem addressing
 a. := [;16]*3 -8
 a.
[-8,-5,-2,1,4,7,10,13,16,19,22,25,28,31,34,37]

 remap(a., [4;8])
[4,7,10,13]

 remap(a., 4, 8)
[4,7,10,13,16,19,22,25]
 remap(a., [-3;4])

[31,34,37,-8,-5,-2,1]

 b. := (3*[;7]-5)~{'a':42, 'b':43, 'woof':44}
 remap(b.,'woof'~[2,5,6]~'a')
[44,1,10,13,42]

 remap(b., list_keys(b.)); // linearize a stem to a list
[-5,-2,1,4,7,10,13,42,43,44]

Final example: Completely remapping the elements
Let us say we wanted to create the transpose of an n x m stem, a. if the transpose is t. then

t.i.j := a.j.i

This just means to swap (i.e. reverse) the order of the indices.

 a. := n(3,5,n(15))
 a.
[
 [0,1,2,3,4],
 [5,6,7,8,9],
 [10,11,12,13,14]
]

 old. := indices(a.-1)
 new. := for_each(@reverse, old.)
 b. := remap(a., old., new.)
 b.
[
 [0,5,10],
 [1,6,11],
 [2,7,12],
 [3,8,13],
 [4,9,14]
]

Example. Higher dimension re-ordering of the axes
List us say we wanted to change the a 3 x 4 x 5 stem to a 5 x 3 x 4, so that the permutation of the axes
is [2,0,1]. This can be done very simply as follows.

 w. := n(3,4,5, n(60)); // original stem
 old. := indices(w., -1); // last axis is always complete set of indices
 new. := for_each(@shuffle, old., [[2,0,1]])
 z. := remap(w.,old., new.)

To compare, the first bits of w. and z. are

 w.
[
 [
 [0,1,2,3,4],
 [5,6,7,8,9],
 [10,11,12,13,14],
 [15,16,17,18,19]
], . . .

and

 z.
[
 [
 [0,5,10,15],
 [20,25,30,35],
 [40,45,50,55]
], . . .

Note again that

z.i.j.k == w.k.i.j

remove

Description
Remove a variable and its values from the symbol table.

Usage
remove(var)

Arguments
var – a variable or string (name of object) to to be removed. If you supply the variable, then that is
removed not its value. If you supply a string (as a constant) then that is removed.

Output
True if it was removed, false otherwise.

Examples
Here we define a stem and check is defined, then remove it.

 t. := [;5];
 say(is_defined(t.));
true

 remove(t.);
 say(is_defined(t.));
false

Here we set a variable then remove it.

 p := 'abc';
 say(is_defined(p));
true
 remove(p);
 say(is_defined(p));
false
script_path

Also, this will remove entries to stems, so

remove(t.b)
will remove the entry with index b from the stem t. Similarly

remove(t.x.)
will remove the entire sub-stem x. Use with care!

 stem.0. := [;3]
 stem.foo:= 5
 stem.
 [[0,1,2]]~{
 foo:5
}
 is_defined(stem.0)
true
 remove(stem.0)
true
 is_defined(stem.0)
false

 stem.
{
 foo:5
}

Another example of passing in variables vs. a string.
Since this causes some confusion, here is an example where a stem is created and an entry is removed
first using a variable and secondly as a string. The key point is that if you supply a variable then its
value is not accessed.

 foo. := [;5]
 remove(foo.3)
truescript_path
 foo.
{
 0:0,
 1:1,
 2:2,
 4:4
}
 remove('foo.2')
true
 foo.
{
 0:0,
 1:1,
 4:4
}

rename

rename_keys

Description
Rename the keys in a stem. See also the keys command.

Usage
rename_keys(target., new_keys.{, overwrite});

Arguments
target. - the stem to be altered

new_keys. - a stem of keys which are a subset of those in target. The values are the new keys.

overwrite - (optional) a flag to force overwriting existing entries. Default is false.

Output
This alters the target. and returns it.

Examples
 a.foo := 42;
 a.bar := 43;
 a.baz := 44;
 key_list.foo := 'a';
 key_list.bar := 'b';
 key_list.baz := 'woof';
 rename_keys(a., key_list.)
{a:42, b:43, woof:44}
 say(a.);
{a:42, b:43, woof:44}

Note that since this changes the keys in the target., the key_list. Unrecognized keys are skipped. A
subset of keys to rename is fine too:

 a.foo := 42;
 a.bar := 43;
 a.baz := 44;
 key_list.foo := 'a';
 key_list.bar := 'b';
 rename_keys(a., key_list.)
 say(a.);
{a:42, b:43, baz:44}

Another example. A common case is that all of the keys in a stem need some transformation. The keys
function will get a stem of the form {key0:key0, key1:key1, . . . } and you make then easily
apply changes to that. QDL works easily on the values of a stem (e.g. a. + 42 only alters the values,
not the keys), so rename_keys allows you to modify the keys. The keys function promotes the keys to
something you can operate on like any other value.

 a.SAML_foo := 'a';
 a.SAML_bar := 'b';
 a.SAML_baz := 'c';
 a.fnord := 'd';
 rename_keys(a., keys(a.)-'SAML_');
{
 bar:b,
 foo:a,
 fnord:d,
 baz:c
}
Note that a.fnord is not effected by this change.

Example. Overwriting values on the rename
This requires a flag to do this.

 c.'x':='X'; c.x_y := 'Y';
 ndx. := {'x_y':'x'};
 rename_keys(c., ndx.);
{x:Y}

Here the value of c.x == c.'x':='X' is overwritten on the rename.

replace

Description
Replace every occurrence of a string by another

Usage
replace(source, old, new{, is_regex})

Arguments
source – the original string or stem of strings

old – the current string

new – the new string.

is_regex - (optional) treat the second argument as a regular expression. If omitted, the default is false.

There is an statement about conformability. In this case if 2 or three of the arguments are stems, then
only matching keys get replaced – the same key must be in all arguments or this is skipped. If exactly
one of the arguments is a stem, then the replacement is made one each element with same arguments –
in effect they are turned in to stem variables with constant entries. If all three are scalars it is just a
standard replacement.

Output
The updated string

Example on a stem
And example with two stem variables and a simple string.

 sourceStem.rule := 'One Ring to rule them all';
 sourceStem.find := 'One Ring to find them';
 sourceStem.bring := 'One Ring to bring them all;
 sourceStem.bind := 'and in the darkness bind them';

 old.all := 'all';
 old.One := 'One';

 old.bind := 'darkness';
 old.7 := 'seven';
 newValue := 'two';
 replace(sourceStem., old., newValue);
{bind:and in the two bind them}

The resulting output is a stem (because an input is) with the common index of bind

Why is this? Because the only key that the two stems have in common is 'bind' and that is applied to
replace 'darkness' with the new value of 'two'.

An example using regular expressions.
In this example, all the spaces in a string are replaced with periods.

 replace('a b c d e fgh', '\\s+', '.', true)
a.b.c.d.e.fgh

return

Description
Return a value or none. Note that this really only makes sense within a script or function. Issuing it in,
e.g. the workspace will not have the intended effect you want since you are asking the system to hand
off the value to another process. Only use this as indicated.

Usage
return([value]);

Arguments
One (optional). The value to be returned. No value means so simply exit at that point. Note that if a
function normally ends and does not return a value, you do not need a return();

Output
The value to be returned.

Examples
Here is a cheerful little program that ignores everything and just returns “hello world”.

define[
 hello_world(x)
]body[
 return('hello world!');
];

 say(hello_world(42));

hello world!

reverse

Description
Reverse the order of the elements in a list

Usage
reverse(list.)

Arguments
list. - the list to be reverse

Ouput
The elements of list. in reverse order. Note that this will only return the list part of the argument. If
there are any extra stem entries, they will be omitted.

Examples
reverse([4,5,'a','b'])
[b, a, 5, 4]

rm

Description
Remove a single file from a directory.

Usage
rm(arg)

Arguments
arg -- the full path to the file

Output
A true if this succeeded, false otherwise

rmdir

Description
Remove an empty directory from a file system.

Usage
rmdir(arg)

Arguments
arg – a path in a file system to an empty directory. You must remove all files and sub-directories for
this to work. Also, unlike mkdir, this will only remove the last component.

Output
A true if this succeeded and a false otherwise.

Examples

say

Description
Print out the argument to the console. The two functions say and print are synonyms. Use whichever
you prefer for readability.

Usage
say(arg {,prettyPrintForStems})

Arguments
arg – anything.

prettyPrintForStems (optional) -IF arg is a stem, try to print a pretty version of it, defined as being
more vertical.

Output
The printed representation of the argument will be put to the console and the value returned is
whatever was printed (so you can embed it in other statements – a very useful debugging trick.)

Examples
The momentous entire “Hello World” program in QDL:

 say('Hello World');
Hello World

And since 42 is the answer to all Life's questions (as per the Hitchhiker's Guide To The Galaxy)

 say(42);
42

Here is an example of how to use this to intercept and print out an intermediate result,

 a := say(432 + 15);
447

Pretty print only applies to stems. It attempts to make a somewhat more human readable version

 f. := [;6];
 say(f., true);
[0,1,2,3,4,5]

scan

Description
Prompt a user for input

Usage
scan([prompt])

Arguments
prompt (optional) – something to print out, probably cuing the user.

Output
Whatever the user types in as a string. There is no end of line marker returned.

Examples
 response := scan('do you want to continue?(y/n):');
do you want to continue?(y/n):y
 say(response);
y

So the user sees the prompt (in this case “do you want to continue?(y/n):”) and types in the response of
“y”, which is stored in the variable response. In this next example we input a loop in buffer mode, then
execute it. (This assumes that local buffering is on in the workspace so you can use the)edit
command).

)edit
edit> i
stop_looping := 'n';
while[
 stop_looping != 'y'
]do[
 stop_looping := scan('stop looping? (y/n):');
]; //end do
.
edit>q
stop looping? (y/n):foo
stop looping? (y/n):bar
stop looping? (y/n):y

Only when we enter the expected response of “y” does it stop.

script_args

Description
Deprecated. Use args() instead. When a script is invoked, the arguments to it are given as a list of
strings. This may be either from the command line or an argument to the script_run() or script_load()
functions. Typically this is called inside a running script to access the arguments passed in.

Usage
script_args([index])

Arguments
-1 = return all args as a stem.

index - (optional) an integer in the proper range.

Output
no arguments - the number of arguments is returned.

integer - the argument for that integer.

Examples.
In the case of invoking a script from the command line,

qdl -run my_script.qdl arg0 arg1 arg2

The arguments (e.g. about the first call inside my_script.qdl) would be accessed as

 say(script_args()); // how many passed in?
3
 say(script_args(1)); // print out the second one (indices start at zero.)
arg1

Note that if the script is invoked from the command line, then only strings will result and may have to
be converted to other types, e.g. with the to_number() call.

Note further that this is not a variable for a specific reason. When calling QDL scripts it is possible to
pass along stem variables as part of the argument list. Therefore getting a specific argument may be
done and the type of the result checked as needed.

script_load

Description
Read a script from a file and execute it in the current environment. This means that any variables it sets
of functions it defines are now part of the active workspace. Caution that this will overwrite whatever
you have if there is a name clash.

See also script_run(), script_args(), script_path()

Usage
script_load(file_name{, arg}*)

Arguments
file_name – the fully qualified path to the file

arg0, arg1… - (optional) the arguments for the script

Output
The output of the script, if any.

Examples
script_load('/home/bob/qdl/math_util.qdl', 3,’foo’, false);

Will load the given script and send it the 3 arguments listed.

&script_name

script_path

Description
Get or set the current script path. This only affects script_run() and script_load() This is the set
of all paths (including vfs paths) that will be checked when running scripts. If you run a script with an
absolute path, e.g.

/ home/bob/scripts/init.qdl

Then the script is run. If the path is relative, then it will be checked against the paths in this variable.
Specifying a scheme restricts resolution to that scheme. No scheme means every path will be checked.

So if

 script_path()
{
 0=vfs#/pt/temp/,
 1=/usr/share/qdl
}

Then here are the resolutions for paths

• vfs#init.qdl ==> vfs#/pt/temp/init.qdl

• vfs#ncsa/reset.qdl ==> vfs#/pt/temp/ncsa/reset.qdl

• init.qdl ==> vfs#/pt/temp/init.qdl, /usr/share/qdl/init.qdl

• abc#boot.qdl ==> none, because abc is not a scheme here.

• #boot.qdl ==> /usr/share/qdl/boot.qdl No scheme means to force resolution in the local
file system, which is the default. Note that if QDL is in server mode, this will fail.

Finally, this can (and should) be set in the configuration so please consult the documentation there.

Usage
script_path([string | stem.])

Arguments
none - Return the current list of paths

string - a string of paths in the form path0:path1:path2… i.e., each path is separated by a colon

stem. - a list of paths, one per entry

Output
If no argument, a stem of the current paths. Otherwise true if the path was set from the argument.

Example
 script_path()
[vfs#/mysql/,
 vfs#/pt/temp/
]

In this case, two paths will be checked and both are in virtual file systems.

script_run

Description
Read a script from a file and execute it in a completely new environment. The output of the file is piped
to the current console.

Usage
script_run(file_name{,arg}*)

Arguments
file_name – the fully qualified path to the file

arg0, arg1… - (optional) the arguments for the script

If there is a single argument that is a stem list, then the components of that will be sent to the script as
the arguments.

Output
The output of the script, if any.

Examples
script_run('/home/bob/qdl/format_reports.qdl');

If the script requires command line arguments, you may simply send them along:

script_run('/home/bob/qdl/format_reports.qdl', '-w', 120);

In this case, it is the same as invoking this script from the command line like so:

qdl -run /home/bob/qdl/format_reports.qdl -2 120

set_default

Description
Set the default value for a stem. If a key is requested but has not been set, the default value is returned.
This allows you initialize a stem without having to explicitly fill in every value. Note especially that the
default value is not figured in to other calculations, such as listing keys.

Usage
set_default(target., scalar | stem.);

Arguments
target. – the stem

scalar | stem. – the default value

Output
This returns the previous default value set for target. or null.

Example. Turning off subsetting
Let us say that we have a stem, a. and wish to naively add another stem to each element:

a. := [[0,0],[0,1],[0,2],[2,0],[2,1],[2,2]]
b. := [2,3]

Simply adding a. + b. yields

 a. + b.
[[2,2],[3,4]]

(One issue is conformability of stems, since this is [a.0 + b.0, a.1+b.1]). Rather than fill up an
entire stem with copies of b., just set it as a default:

b.:={*:[2,3]}
 a.+b.
[[2,3],[2,4],[2,5],[4,3],[4,4],[4,5]]

Default values means you do not have to know anything about the structure of the other stem.

Example. Setting the default
There are equivalent ways of setting the default

 set_default(x., 42)
 x. := x. ~ {*:42}

Example. Setting the default does not alter the keys

 set_default(x., 1);
 say(x.);
[]

So no values have been defined. Let's set one and check it:

 x.0 := 10;
 say(x.);
[10]

And if we needed to access a value of x. that has not been set

 say(x.1);
1

Just to emphasize, default values are not used in most stem operations.

 say(get_keys(x.));
[0]

shuffle

Description
Permute, i.e.shuffle a stem, given a complete list of its keys. Note especially that an incomplete list of
keys will fail.

Usage
shuffle([int] | [source., permutation.])

Arguments
int = a positive integer

source. = the stem to be shuffled

permutation. = a list of keys for source. These give the new value of the indices.

Output
A stem consisting of shuffled elements. If the argument is an integer, then the returned output is a list
[0,1,…,n-1] that has been randomly permuted. If the arguments are a pair of stems, the result is the first
argument permuted according to the second.

Example: Making a permutation
 shuffle(5)
[2,4,3,0,1]

This creates a list of integers and then arranges them in random order.

Example: Permuting the elements directly
In this example, we permute the elements of a vector

 q.:= 10+3*[;5]
 q.
[10,13,16,19,22]
 shuffle(q., [4,2,3,1,0])
[22,16,19,13,10]

How to read this1?

/ \

1 OK, I'll confess. This is from Abstract Algebra and referred to as cycle notation. QDL generalizes the indices as it is
wont to do.

|0 1 2 3 4|

|4 2 3 1 0|

\ /

So the top row are the indices in the vector, the bottom row is the new value.

so old index 0 → new index 4, old index 1 → new index 2, etc. This works generally with stems too.

 a.p:='foo';a.q:='bar';a.r:='baz';a.0:=10;a.1:=15;
 b.q :='r';b.0:='q';b.1:=0;b.p:=1;b.r:='p';
 a.
{0:10, 1:15, p:foo, q:bar, r:baz}
 b.
{0:q, 1:0, p:1, q:r, r:p}
 shuffle(a., b.);
{0:bar, 1:10, p:15, q:baz, r:foo}

sin
See transcendental functions

sinh
See transcendental functions

size

Description
Return the size of the argument

Usage
size(var)

Arguments
var – any variable or argument

Output
This varies.

• stem – the number of keys (this does not check if there are stems as values)

• string – the length of the string

• boolean, integer, decimal – zero, since these are scalars.

Examples
 size(42)
0
 size('abcd')
4
 size([;10])
10

sleep

sort

Description
Sort an object

Usage
sort(arg{,up})

Arguments
arg - the argument. This may be any type.

up - (optional) a boolean that if true (default) sorts in ascending order and if false, descending order

Output
A list. Note that different types are not comparable. QDL’s solution is to sort each type and return them
in groups. If your data is of one type (e.g. numbers, strings) then this exactly sorts as you expect.

Example
 sort([5,-2/3, 4/7, cos(pi()/8)])
[-0.666666666666666,0.571428571428571,0.923879532511287,5]
 sort([5,-2/3, 4/7, cos(pi()/8)], false); //descending order
[5,0.923879532511287,0.571428571428571,-0.666666666666666]

A mixed example

 sort({'a':'SPQR','b':-2/3,'c':3/7,'d':'woof'})
[SPQR,woof,-0.666666666666666,0.428571428571428]

Note that strings are grouped first, then numbers. Certain elements (like sets and embedded stems) are
simply grouped unordered at the end of the list. The point is that this sorting is for probabilities – the
vast majority of the time you have homogeneous data and want to sort that – vs. possibilities, where
you have some very odd data structure.

star (* in extractions)

Description
A functional analog of the wildcard, *, used with extraction operator. This allows for creating
expressions on the fly as regular lists.

Usage
star()

Arguments
None

Output
None

Examples
in extractions. That assumes the full set of indices in context.

a* == a\star()

This is most useful if you are constructing an argument for extraction, e.g.

 a.:=n(3,4,n(12))
 a\>(1~(size(a.)<4?star():[2,4]))
[4,5,6,7]

Note that this creates (in this case) the expression a\>[1,*] meaning go to the first element, return
everything. Compare with say

 a\>[2,[1,3]]
[9,11]

starts_with

Description
Find the indices of elements in the right that start elements in the left. This is the case that you have a
bunch of strings (no order and may or may not be complete or have too many elements) and need to
know which ones start which. This only works on strings at present and only for lists. Read the name as
“(left) list starts with...”

Usage
starts_with(target., caputs.)

Arguments
target. = a list of elements which are to be searched.

caput. = (Latin caput =head) are the starting of lines to be used.

Output
A list conformable to the left argument, i.e., the list is identical in length. The values are which element
in the right fulfills the requirement. If there is no match, then a value of -1 is used.

Examples
 starts_with(['a','qrs','pqr'],['a','p','s','t'])
[0,-1,1]

read this as:

left arg index 0 starts with right arg index 0
left arg index 1 starts with nothing on right
left arg index 2 starts with right arg index 1

How to get the subset of things that start? Use mask:

 mask(X., -1 < starts_with(X.,Y.))

So

 mask(['a','qrs','pqr'], -1 <starts_with(['a','qrs','pqr'],['a','p','s','t']))
{0=a, 2=pqr}

sublist

Description
Grab a sublist of a given argument with elements addressed by a range of indices (lists only). This
operates on lists only.

Usage
subset(source., start_index{, count});

Arguments
source. - the stem list to take a subset of

start_index - where to start in the source stem

count - (optional) how many elements to take. Omitting this means take the rest of the argument

Output
The altered stem. Note that this does nothing to the original stem.

Example
 // grab a subset of a set - all elements less than 3.
 subset((x)->x<3, {-2,0,4,5})
{0,-2}
 stem. := [;5] + 20;
 // Just grab the tail of this list
 subset(stem., 2)
[22,21,24]
 // grab some stuff in the middle.
 subset(stem., 1, 3)
[21,22,23]

Signed start_index is allowed
You may use a negative start_index – this simply counts from the end of the list

 subset([;15], -7, 4)
[8,9,10,11]

Using a list to get a subset.

In this case,

 2*[;5] +1
[1,3,5,7,9]
 subset(3*[;10], 2*[;5]+1)
[3,9,15,21,27]

Note that you do not need to stick with integer keys

 subset(3*[;15], {'foo':3,'bar':5,'baz':7})
{bar:15, foo:9, baz:21}

substring

Description
Return the substring of an argument beginning at the nth position.

Usage
substring(arg, n{,length} {,padding})

Arguments
arg – the string or stem of strings to be acted up
n - the start position in each string

length (optional) – the number of characters to return. Note that if this is omitted, the rest of the string
is returned. If it is longer than the length of the string, only the rest of the string is returned unless the
pad argument is given.

padding – (optional) a string that is used cyclically as the source for padding.

Output
The substring. Notice that this behaves somewhat differently than in some other languages in that it
may be used to make results longer than the original argument.

Examples
A basic example. Remember that the first index of a string is 0, so n = 2 means the substring starts on
the third character.

 a := 'abcd';
 say(substring(a,2));
cd

To use the padding feature

 say(substring(a,3,10,'.'));
d.........

And do note that the padding need not just be a character, but will be repeated as needed:

 say(substring(a,1,20,'<>'));
bcd<><><><><><><><><

Finally, a stem example. Note that the padding option makes all results the same length:

 b.0 := 'once upon';
 b.1 := 'a midnight';
 b.2 := 'dreary';
 d. := substring(b., 0, 15,'.');
 while[for_next(j,3)]do[say(d.j);];
once upon.......
a midnight......
dreary..........

Or you could get fancy do do something like make a table of contents:

 d. := d. + ' p. ' + n(3)
 while[for_next(j,3)]do[say(d.j);];
once upon....... p. 0
a midnight...... p. 1
dreary.......... p. 2

tail

Description
Return the right hand side of a string given a delimiter to start at.

Usage
tail(target, delimiter (, is_regex))

Arguments
target - the input (string or stem of strings) to be acted on

delimiter - the marker to be found. The last such marker is used

is_regex- if true then all matching uses delimiter as a regular expression. false is the default.

Output
The tail of of the string(s) or the empty string if there is no match. The delimiter is not returned.

Examples

 tail('qwe@asd@zxc', '@'); // only last occurrence is returned.
zxc

 tail('qweaAzxc', '[aA]+', true)
zxc

The second example uses a regex to do a case insensitive match on double a.

tan
See transcendental functions

tanh
See transcendental functions

to_boolean

Description
Convert a value to its boolean representation. This is very useful in places like scripts, where the
argument may be a string (like ‘true’) and must be converted to a boolean. QDL scripts will faithfully
pass along their values, but external scripts can only pass in strings.

Usage
to_boolean(arg)

Arguments
arg - any value, including stems. Conversion is as follows:

boolean - no change

string - returns logical true if the argument is 'true' (case sensitive)

integer - returns true if and only if the value equals 1

decimal - return true if and only if the integer part equals 1.

stems – applied to each element.

Output
A boolean value or values if applicable.

Examples
Examples of converting each type. Note that with the decimal, only the integer portion is checked and
that must be equal to 1 in order to get a true back.

 to_boolean('true')
true
 to_boolean(1)
true
 to_boolean(319/47)
false
 319/47
6.787234042553191
 to_boolean(1.000003)
true
 to_boolean([0,1,0])
[false,true,false]

to_json

Description
Convert a stem to a JSON string. Note that JSON = JavaScript Object Notation is a common way to
represent objects and is treated as a notation, not a data structure. See the extended note in the
from_json section. Not every stem can be converted to a JSON object. For instance, stems allow for
cycles which JSON cannot resolve. Also, nulls in QDL are rendered as a reserved string since there is
no analog of them.

Usage
to_json(stem.{,indent, convert_type})

Arguments
stem. = the stem to represent in JSON notation. Unlike from_json, this will convert the entire stem to
JSON, not just the elements of the stem. If you really need to convert elements either loop or use
for_each.

indent (optional) = whether or not to indent the resulting string to make it more readable. This controls
how much whitespace is added. The higher the number, the more space in the result. Usually a value of
1 or 2 is sufficient for most cases.

convert_type - the type of decode to use on the keys,

So these are valid calls

to_json(stem.) – do not convert the names

to_json(stem. 2) – indent the output with a spacing of 2

to_json(stem., 2, 32) – convert so that the spacing is 2 and the keys, which were encoded in base
32, are properly decoded.

Output
A string in JSON which represents the argument.

Examples
 a. := [;3]
 a.woof := 'arf'
 to_json(a.)
{"woof":"arf","0":0,"1":1,"2":2}
 // and just to show how to indent the result
 to_json(a.,1)
{
 "woof": "arf",
 "0": 0,
 "1": 1,
 "2": 2
}

Large JSON objects are often best handled through files or other means rather than directly.

 claims. := from_json(read_file('/tmp/claims.json'));
 size(claims.)
137

An example where you convert a stem to a JSON object but do not want the variables converted with
decode:

 a.$a := 2;

 a.$b := 3;
 to_json(a., false)
{"$a":2,"$b":3}

So the names of the variables are turned in to JSON unaltered.

Again, JSON is a notation for an object and you must know what the structure of the object is and all
the particulars about it to do anything useful with it.

to_lower

Description
This will convert the case of a string to all upper or lower case respectively.

Usage
to_lower(arg), to_upper(arg)

Arguments
arg – either a string or a stem variable of strings. Non-strings are ignored.

Output
A conformable argument of strings.

Examples
 a := 'mairzy doats';
 b := to_upper(a);
 say(b);
MAIRZY DOATS

to_number

Description
Convert a scalar or simple stem to numbers.

Usage
to_number(scalar | stem.)

Arguments
scalar – any type is accepted.

stem. – a stem of scalars. At this point nested stems are not processed.

Output
A number or stem of numbers. The types may be mixed (so integers and decimals). Note that boolean
values true and false are converted to resp. 1 and 0. Numbers are simply returned, unchanged. The
value null cannot be converted and if found will raise an error.

Examples
Here is a stem with a few different types (including an integer as the last entry).

 s.0 := '123';
 s.1 := '-3.14159'
 s.2 := true
 s.3 := 365

To convert everything that is not already a number to a number:

 to_number(s.)
[
 123,
 -3.14159,
 1,
 365
]

Here is a check that indeed these are numbers:

 5 + to_number(s.)
[
 128,
 1.85841,
 6,
 370
]

Just as a check, adding 5 to each element will either concatenate if a string or (in the case of s.3) add it:

 5 + s.
[
 5123,
 5-3.14159,
 5true,
 370
]

to_string

Description
Convert a variable to its string representation. This creates the representation used by the print
command but does not output it to the console. It merely returns it.

Usage
to_string(arg{,pretty_print})

Arguments
arg - any variable, stem or scalar-only

pretty_print - (optional) boolean (applies only to stems) prints in vertical format if true.

Output
A string that represents the argument.

Examples
This is quite useful when printing stems. Remember that if you write

'foo' + stem.

The result is to concatenate every element in the stem with 'foo' which is not wanted when printing.

 'args = ' + to_string([;3])
args = [0, 1, 2]

Example say vs. to_string
This will contrast the output of say vs. that of to_string. In the former case, the value of the argument
is returned, in the latter, it is converted to a string.

 say(4 + say(3 + 4));
7
11
 say(4 + to_string(3 + 4));
47

In the first case, 3 + 4 is computed and the value is printed. This is added to 4 and that value, 11 is
printed. In the second case, 3 + 4 is computed and turned in to a string, 7. That is concatenated to 4,
yielding the string 47.

to_upper
See to_lower

to_uri

Description
Parse a string into a stem whose entries are the (RFC 3986 compliant) components

Usage
to_uri(string)

Arguments
string - any string. If the string is not a valid URI, this will fail.

Output
A stem variable of the components, each of which is a string (except the port, which is an integer.) Note
that no supplied port sets the value to -1;

Examples
 u := 'https://www.google.com/search?
channel=fs&client=ubuntu&q=URI+specification#my_fragment'
 to_uri(u)
{
 path:/search,
 fragment:my_fragment,
 scheme_specific_part://www.google.com/search?channel=fs&client=ubuntu&q=URI+specification,
 scheme:https,
 port:-1,
 authority:www.google.com,
 query:channel=fs&client=ubuntu&q=URI+specification,
 host:www.google.com
}

So you can see what the host is, grab the fragment, look at the query.

 tokenize(to_uri(u).query, '&')
[channel=fs,client=ubuntu,q=URI+specification]

splits the query into its elements quite nicely.

tokenize

Description
This will take a string and and delimiter then split the string using the delimiter.

Usage
tokenize(arg, delimiter{,useRegex})

Arguments
arg – either a string or stem of strings

delimiter - either a delimiter string or a regular expression (last argument is true.)

useRegex - (optional) second argument is a regular expression. Default is false.

Output
If arg is a string, then a list of tokens. If arg is a stem, then a stem of stems. Remember that the keys
are preserved if the argument is a stem and a simple list (keys are 0, 1,…) if a string.

Examples
A simple example

 say(tokenize('ab,de,ef,',','));
[ab,de,ef]

An example tokenizing a stem variable.

 q.foo := 'asd fgh';
 q.bar := 'qwe rty';
 say(tokenize(q., ' '));
{bar:[qwe,rty], foo:[asd,fgh]}

Tokenizer only works on strings. Here is the result of attempting to tokenize an integer.

 say(tokenize(123145, '1'));
123145

In this case, the argument is returned unchanged.

Example with a regular expression

 a := 'a d, m, i.n'
 r := '\\s+|,\\s*|\\.\\s*'
 tokenize(a,r,true)
[a,d,m,i,n]

Don’t forget that you can do regular expression matching with the =~ operator.

transcendental functions
(Transcendental functions are those that cannot be represented by polynomials or rational expressions
of them. They therefore “transcend” Algebra which explains the name given to them in the late 18th
century, i.e., they require infinite series.)

These are the standard math functions you would expect. Rather than have separate entries, here is a
list (y refers to the output values, x to the inputs):

Name input output Description
acos(x) -1 <= x <= 1 0 <= y <= π arc cosine, result in radians
acosh(x) 1 <= x 0 <= y inverse of the hyperbolic cosine
asin(x) -1 <= x <= 1 -π/2 <= y <= π/2 arc sine, result in radians
asinh(x) any any inverse of the hyperbolic sine
atan(x) any -π/2 < y < π/2 arc tangent, result in radians
atanh(x) -1 < x < 1 any inverse of hyperbolic tangent

ceiling(x) any any the ceiling of the number.
cos(x) any -1 <= y <= 1 cosine of the angle x, x in radians.
cosh(x) any 1 <= y hyperbolic cosine
exp([x]) any 0 < y exponential function. exp(x) == e^x
floor(x) any any the floor of the number
gcd(x,y) any int int greatest common divisor
lcm(x,y) any int int least common multiple
ln(x) 0<x any natural (base e) logarithm, inverse is e^y
log(x) 0 < x any base 10 logarithm. Note inverse is 10^y

nroot(x,n) n odd, any x
n even, 0 <= x

any Compute the nth root of x.
Note that n != 0 must be an integer

pi([x]) -- π the power of pi in the current precision, π^x
π([x]) identical to pi(), π is unicode \u03c0
sin(x) any -1 <= y <= 1 the sine of the angle x, x in radians
sinh(x) any any hyperbolic sine
tan(x) any any the tangent of the angle x, x in radians
tanh(x) any any inverse of the hyperbolic tangent.

Notes:

1. Both exp() and pi() (or π()), take arguments, raising them to the indicated power. No
argument means the default argument is 1.

2. e is not used as a number because it conflicts with engineering notation, so e^x won’t work.
Use exp(x)

3. Note that x here is a scalar, but these will operate on stems and lists.

This is a good collection that should cover most cases and it is easy to define others you need. E.g.

sec(x)->1/cos(x);
asec(x)->acos(1/x);
logn(x, n)->ln(x)/ln(n); // convert a log to another base, n.

Example
The first few powers of 2 are

2^n(5)
[1,2,4,8,16]

If you wanted to get the logarithm, base 2, log2 (x) = ln(x)/ln(2) so to do this for our list:

 ln(2^(n(5)))/ln(2)
[
 0E-15,
 1.000000000000000,
 2.000000000000000,
 3.000000000000007,
 4.000000000000000
]

Note. While QDL supports arbitrary decimal precision, remember that computing the above values
often relies on algorithms that converge slowly to the answer and in bad cases the time rises as the
square of the digits. QDL will dutifully compute everything to 10,000 places for your 100 digit number
if you like, but you must embrace patience. Need we remind you that physical measurement stops
about 10^(-11)? For most real life problems, the default precision of 15 allows these functions
converge very quickly.

transpose, µ

Description
Take a stem (of higher dimension) and transpose the dimensions. This permits you to restructure stems
as needed. A simple case yeilds the transpose of a matrix and the operator µ is chosen to show the axis
about which the transpose happens.

Usage
transpose(arg.{, a | p.})
{a|p.}µarg.

Arguments
arg. - the stem to operate upon

a - (optional, integer) the axis. This may be signed, so a := -1 would operate on the last axis of the
arg. , whatever that is. Signed axes means you don’t need to know the structure of the argument ahead
of time.

p. - (optional, simple list) a permutation of the dimensions. A partial list of indices is interpreted as

p. ~ ~exclude_keys([0,1,…, rank-1], p.)

For instance, if you have a massive stem, x. with

dim(x.) == [4,2,6,5,8,7,9,11,15,6]

 0 1 2 3 4 5 6 7 8 9 << -- indices of the dimensions

 and

p. := [3,7,1]

then the resulting permutation of x. would be

[3,7,1,0,2,4,5,6,8,9]

and

 dim(x., p.)
[5,11,2,4,6,8,7,9,15,6]

Finally, remember that this works on the zeroth axis unless otherwise specified so if a. is an n×m array,
transpose(a.) is the standard matrix transpose m×n array, hence the name.

Examples comparing integer and stem addressing
 a. := [;16]*3 -8
 a.
[-8,-5,-2,1,4,7,10,13,16,19,22,25,28,31,34,37]

 remap(a., [4;8])
[4,7,10,13]
 // compare with the subset function (since a. is a simple list)
 sublist(a., 4, 8)
[4,7,10,13,16,19,22,25]

 remap(a., [-3;4])
[31,34,37,-8,-5,-2,1]

 b. := (3*[;7]-5)~{'a':42, 'b':43, 'woof':44}
 remap(b.,'woof'~[2,5,6]~'a')
[44,1,10,13,42]

 remap(b., list_keys(b.)); // linearize a stem to a list
[-5,-2,1,4,7,10,13,42,43,44]

Final example: Completely remapping the elements
Let us say we wanted to create the transpose of an n x m stem, a. if the transpose is t. then

t.i.j := a.j.i

This just means to swap (i.e. reverse) the order of the indices.

 a. := n(3,5,n(15))
 a.
[
 [0,1,2,3,4],
 [5,6,7,8,9],
 [10,11,12,13,14]
]

 old. := indices(a.-1)
 new. := for_each(@reverse, old.)
 b. := remap(a., old., new.)
 b.
[
 [0,5,10],
 [1,6,11],
 [2,7,12],
 [3,8,13],
 [4,9,14]
]
(And, yes, transpose(a.) would do this.)

Example. Higher dimension re-ordering of the axes
List us say we wanted to change the a 3 x 4 x 5 stem to a 5 x 3 x 4, so that the permutation of the axes
is [2,0,1]. This can be done very simply as follows.

 w. := n(3,4,5, n(60)); // original stem
 old. := indices(w., -1); // last axis is always complete set of indices
 new. := for_each(@shuffle, old., [[2,0,1]])
 z. := remap(w.,new., old.)

To compare, the first bits of w. and z. are

 z.
[
 [
 [0,1,2,3,4],
 [5,6,7,8,9], . . .

and

w.
[
 [
 [0,5,10,15],
 [20,25,30,35],

 [40,45,50,55], . . .

and

z.i.j.k == w.k.i.j

Output
The restructured stem. Of course, arg. is never altered.

Note: You really don’t need to obsess over what the result is. The usual usage is that you are simply
describing what part of the data should be acted upon and you need never need to gaze upon the output.
There is an excellent argument that this should be made into an operator. However, it is much more
flexible to have it as a function. If you wish to be terse, use the operator µ (\u29b0) for this, e.g.

-1µarg.

Examples
The next example is shorter than it looks. Just notice the patterns of how the data moves

 a. := n(2,3,4, 10+n(24))
 a.
[
 [
 [10,11,12,13],
 [14,15,16,17],
 [18,19,20,21]
],
 [
 [22,23,24,25],
 [26,27,28,29],
 [30,31,32,33]
]
]
 // The original is always the same as transpose(a., 0) == a.
 transpose(a., 1); // glom the rows together, dim is 3×2×4
[
 [
 [10,11,12,13],
 [22,23,24,25]
],
 [
 [14,15,16,17],
 [26,27,28,29]
],
 [
 [18,19,20,21],
 [30,31,32,33]
]
]
 transpose(a., 2); // glom the columns together, dim is 4×2×3
[
 [
 [10,14,18],
 [22,26,30]

],
 [
 [11,15,19],
 [23,27,31]
],
 [
 [12,16,20],
 [24,28,32]
],
 [
 [13,17,21],
 [25,29,33]
]
]

Now for an example of a complete remapping of the indices. The stem has indices i, j, k and the right
argument says that the output, call it output. satisfies

 output.j.k.i := a.i.j.k
This looks like

 transpose(a., [1,2,0]) // dim is 3×4×2
[
 [
 [10,22],
 [11,23],
 [12,24],
 [13,25]
],
 [
 [14,26],
 [15,27],
 [16,28],
 [17,29]
],
 [
 [18,30],
 [19,31],
 [20,32],
 [21,33]
]
]

Reducing things along axes.
So axis 0 are boxes, axis 1 is rows and axis 2 (last axis) is the columns. If you wanted to reduce down
the columns, you’d issue (here -1 for the axis has the same effect as 2 for the axis)

 reduce(@+, reduce(a., -1))
[
 [46,62,78],
 [94,110,126]
]

Note that the shape of a. is 2×3×4 and summing along the last axis gets rid of it, so that the final shape
of the reduced answer is 2×3. If you wanted to sum the rows together, you’d issue

 reduce(@+, transpose(a., 1))
[
 [42,45,48,51],
 [78,81,84,87]
]

The rows are added together and the 2×3×4 stem is reduced to 2×4

The standard operation for all built in functions is to operate on the zero-th axis, so

 reduce(@+, a.)
[
 [32,34,36,38],
 [40,42,44,46],
 [48,50,52,54]
]

 Yields a 3×4 from the original 2×3×4 stem, adding the boxes together.

Example. Matrix multiplication
In this example we are going to show how to use the axis function to multiply two matrices. In general,
to multiple an n×m and m×n matrix dimensions must match. Our two matrices are

 say(x. := [[1,2,3],[4,5,6]], true)
[
 [1,2,3],
 [4,5,6]
]
 say(y. := [[10,11],[20,21],[30,31]], true)
[
 [10,11],
 [20,21],
 [30,31]
]

This done by multiplying the rows of the first matrix by the columns of the second, then summing. In
QDL, you’d do this as

z. := for_each(@*, x., transpose(y.-1))

which is a 2×2×3 stem. For the summation, do it along the last axis:

 reduce(@+, tranpose(z., -1))
[
 [140,146],
 [320,335]
]

All together, the complete program to multiply two matrices of dim n×m and m×n is a single line:

mm(x., y.) → reduce(@+, transpose(for_each(@*, x., transpose(y., -1)) ,-1));

This function is defined in the mathx module.

trim

Description
Trim trailing space from both ends of a string. One point to note is that since stem variables can contain
stem variable, this only operates at the top-level and if you wish to trim included stems you must do so
directly. This prevents “predictable but unwanted behavior.”

Usage
trim(arg)

Arguments
arg is either a string or a stem of strings. This function has no effect on non-strings.

Output
A result conformable to its argument.

Examples
An example

 a := ' blanks ';
'blanks' == trim(a);

Another example, using a mixed stem variable.

 my_stem.0 := ' 'foo';
 my_stem.1 := -42;
 my_stem. := trim(my_stem);
 my_stem.0 == 'foo';
 my_stem.1 == -42; // unchanged.

unbox

Description
Takes a stem variable and splits it up, turning each key in to a variable.

Usage
unbox(stem.{, safe_mode_on});

Arguments
stem. - the stem to unbox

safe_mode_on - (optional) a boolean which when true (default) will not overwrite variables in the
current workspace and when false will. Note that this is an all or nothing proposition: safe_mode_on =
true means that nothing will get processed if there is a clash.

Output
A true if the result worked.

Examples
 a. := [-5;0];
 b. := [5;10];
 c. := box(a., b.);
)vars
c.
 unbox(c.);
)vars
a., b.

union

Description
Take a set of stems and put them all together in to a single stem

Usage
union(stem1., stem2., ,,,);

Arguments
The arguments are either stems or variables that point to stems.

Output
The output is a new stem that contains all of the keys. Note that if there are multiple keys then the last
argument with that key is what is set. The result is guaranteed to have every key in all the arguments in
it. See also join.

Examples
 a. := -5 + [;10];
 b. := 5 + [;5];
 a.arf := 'woof';
 b.woof := 'bow wow';
 c. := -20 + [;3];
 union(a., b., c.)
[-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,-20,-19,-18]~{
 arf:woof,
 woof:bow wow
}

Note 1: that in this example these stems have some keys contained in the previous one.

Note 2: Lists are appended to the end of the current list.

Example.Compare with ~ operator

 p.6 := 100;
 p.~[1,2,3]
{
 6:100,
 7:1,
 8:2,
 9:3
}
 union(p., [1,2,3])
[100,1,2,3]

In this case, there was one entry with an integer index (6) in p., appending the list tacks it on to the end
of the current list rather than overwriting elements.

Unique

Unload

&use

values

Description
Return the set of values in a stem.

Usages
values(arg)

Arguments
arg = The argument. This may be a stem or scalar. If a scalar, then the value itself wrapped in a set is
returned.

Output
A set of the unique values. Note that this will look through every set for a value.

Examples
In this example, a couple of lists are

 values(['a',2,4,true]~['a','b',0,3,true])
{0,a,2,b,3,4,true}

Another example, showing that this onlvaly applies to lists, not whole stems:

 values({'p':'q'}~{'p':'r'}~(2*[;3])~(2+[;4]))
{0,2,3,4,5}

var_type

Description
For a given variable, return an integer that tells what the stored type is. This is very useful in, for
instance, writing switch statements to process the contents of a stem whose elements are unknown.

Usage
var_type(arg0, arg1, arg2, ...)

Arguments
arg0,… Each is an expression (which also means a variable or constant). Note that a list of arguments
returns a stem list whose elements are the types of the arguments.

Output
The possible results are all integers and are

Value Variable type
-1 undefined variable

0 null

1 boolean

2 long

3 string

4 stem

5 decimal

Also, these are output from the constants() command and may be accessed there

Examples
We will define a stem with several elements.

 a.0 := 42
 a.1. := random(3)
 a.2 := 'foo'
 a.4 := true
 a.5 := -34555.554345
 a.6 := null

Note that there is no a.3 element – it is undefined. The entire stem can have its type checked

 var_type(a.)
4

This means it is a stem. Next, we loop through the elements and say what the type of each is. Note that
the key set does not touch a.3 since there is no such element. Note that the last

 while[for_keys(j, a.)]do[say(var_type(a.j));];
2
4
3
1
5
0

 var_type(a.0, a.2, a.3)
[2, 3, -1]

Note that the last one returns a -1, meaning that a.3 is undefined.

For example, how to use it with a switch statement:

)buffer create temp
0| |temp
)edit 0
edit>i
while[
 for_keys(j, a.)
]do[
 type := var_type(a.j);
 switch[
 if[type == -1]then[say('undefined');];
 if[type == 0]then[say('null');];
 if[type == 1]then[say('boolean:' + a.j);];
 if[type == 2]then[say('integer:' + a.j);];
 if[type == 3]then[say('string:' + a.j);];
 if[type == 4]then[say(a.j);];
 if[type == 5]then[say('decimal:' + a.j);];
]; //end switch
]; // end do
.
edit>q
done
) 0
integer:42
{0=-6087687479374980224, 1=-6728256611667942117, 2=5319763765663058324}
string:foo
boolean:true
decimal:-34555.554345
null

(This uses the line editor and an in-memory buffer.)

Another example

Let us say we wanted to check if the variable foo is undefined. If we enter

 var_type('foo')
3

We expect -1 but get 3 back. The reason is that 'foo' is a string. Make sure you don't quote things. This
is right:

 var_type(foo)
-1

&vars

vfs_mount

Description
Mount a virtual file system

Usage
vfs_mount(cfg.)

Arguments
cfg. = a stem that contains the configuration for this type.

permissions (optional) = the permissions the VFS has. These are 'r' for read and 'w' for write. If
omitted, the VFS is mounted in read-only mode.

Required entries for the following types

type = the type of virtual file system. Allowed values are

 pass_through
 mysql
 memory
 zip

scheme = the scheme (label) for this system

mount_point = the internal path (starts with a /) for programs to refer to.

access = (optional) the permissions, 'r' for readable, 'w' for writeable or 'rw' for both. Omitting this
mounts the VFS in read-only mode.

Here are the supported other parameters by type.

memory
No other parameters are required.

Example

cfg.type :='memory';
cfg.scheme := 'ram-disk';
cfg.mount_point := '/vfs/cache';
cfg.access := 'rw';
vfs_mount(cfg.);

This would create a memory store mounted at /vfs/cache and accessible with the prefix ram-disk, e.g.

read_file('ram-disk#/vfs/cache/bigfile.txt);

pass_through
root_dir = The directory that servers as the root for this VFS. All files and directories will be created
under this

zip
zip_file = the absolute path to the zip file that will be mounted. All zip-based VFS are read only.

mysql
This has a lot of parameters for connecting to a database

Output
A 0 if there was no problem.

Examples
In this example, we will mount a local file system and read a file. We mount the VFS for both reads and
writes. You refer to a file in the vfs seamlessly using the scheme to prefix it.

 cfg.type :='pass_through';
 cfg.root := '/home/ncsa/dev/qdl/scripting';
 cfg.mount_point := '/';
 cfg.scheme := 'qdl-vfs';
 cfg.access:= 'rw';
 vfs_mount(cfg.);
0
 read_file('qdl-vfs#/client.xml')
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
<comment>OA4MP stream store</comment>
… lots more

Another way of doing the previous example.
You can also just set all the parameters and box them up. This will, or course, remove these from the
symbol table.

 type :='pass_through';
 root := '/home/ncsa/dev/qdl/scripting';
 mount_point := '/';
 scheme := 'qdl-vfs';
 permissions := 'rw';
 cfg. := box(type,root,mount_point,scheme, permissions);
 vfs_mount(cfg.);

So the given file is loaded and read. All file operations behave normally. The reason for virtual file
systems is two-fold. First off, if QDL is running in server mode, directories may be mounted in read
only fashion to provide access to libraries, modules and such in a completely installation independent
way. Secondly, when QDL is running in server mode, all standard file operations are prohibited but you
may still have virtual ones. This allows a server to, for instance, mount a jar file with libraries in it.

(The reason for this on a server is security: Often servers run with enhanced privileges which may be
inherited by applications. QDL always seeks to be a good citizen and only allows what is specifically
granted to it.)

vfs_unmount

Description
Unmount a virtual file system. Once unmounted, no operations on that file system can be performed.
This does nothing to the underlying file system, it just removes the mount point in the current session.

Usage
vfs_unmount(mount_point)

Arguments
mount_point - the scheme delimited mount point. This must be exact or the operation will fail.

Output
A boolean that is true if the operation succeeded. Otherwise an error is raised if, for instance, the
mount point is invalid.

Examples
Listing the vfs’s in the workspace yields
)ws vfs
Installed virtual file systems
type:mysql access:rw scheme: vfs mount point:/mysql/ current dir:(none)
type:memory access:rw scheme: vfs mount point:/ramdisk/ current dir:(none)
type:pass_through access:rw scheme: vfs mount point:/pt/ current dir:(none)

and to unmount vfs#/ramdisk/ you would issue

 vfs_unmount(‘vfs#/ramdisk/’)
true

Checking the listed VFS’s yields
)ws vfs
Installed virtual file systems
type:mysql access:rw scheme: vfs mount point:/mysql/ current dir:(none)
type:pass_through access:rw scheme: vfs mount point:/pt/ current dir:(none)

Any operations on vfs#/ramdisk/ will now fail.

ws_macro

Description
Run a set of workspace commands from QDL. These will be run exactly as if you had typed them in at
the console. This allows you to customize a workspace using, e.g., an ini file and the __init() method
of the workspace. It is not intended to be used more than a wee bit for simple WS scripting, such as
setting up a workspace. For instance, you can execute QDL from inside a macro, but if you are doing
that, you might want to consider using a script instead. Scripts are how to get complexity in QDL, not
workspace macros.

The major difference between macros and scripts is that macros allow for workspace commands and
execute in exactly the workspace environment.

Usage
ws_macro(arg | arg.)

Arguments
arg - a string of commands. There may be multiple commands separated with line feeds.

arg. - a list of commands. Each line will be executed in order.

Output
This returns true if the command succeeds or produces an error.

Examples
Sending a single string with line feeds. This will be split and each token will be executed as a separate
command.

 ws_macro(')ws get pp\n)ws get echo\n)ws get external_editor');
pp is on
echo is on
external_editor is line

Sending a stem of commands.

 ws_macro([')ws get pp',')ws get echo',')ws get external_editor']);
pp is on
echo is on
external_editor is line

You can also set this up using an ini file.

[workspace]
defaults:=')ws set pp on',')ws set echo on',')ws set external_editor nano'

would set this to a stem of commands, then you could issue

 ini. := file_read('/path/to/ws.ini', 2);
 ws_macro(ini.workspace.defaults);
pp is on
echo is on
external_editor is nano

And a __init function might look like this

define[
 __init()
][
 ini. := file_read('/path/to/ws.ini', 2);
 ws_macro(ini.workspace.defaults);
];

So on loading the workspace you might see

)load my_workspace
my_workspace loaded
pp is on
echo is on
external_editor is nano

Symbol Reference

Monographs
I.e., single character operators. These are ASCII, not unicode, and the unicode alternate (if there is one)
is listed.

@
Function reference, alternate: (unicode 2297)⊗

?
Conditional expression marker, alternate: (unicode 21d2)⇒

~
The join or tilde operator.

!
Logical not, unique ordering in extractions. For logical not, alternate is ¬ (unicode 00ac).

Marker for modules.

$
The dollar sign. This is used as part of any variable name. Note the convention that a name that starts
with two of them is a global or extrinsic variable.

%
Integer division of numbers, symmetric difference for sets

*
Multiplication for numbers. For strings, this will replicated string for an integer number.

()
Parentheses. These are used for grouping expressions. In the workspace commands to the working
environment start with a close parenthesis.

[]
Square brackets. These are used as parts of statements. The important point is to remember that
anything between brackets has a local scope and visibility.

{ }
Curly braces. Used for sets or stems. A set is a list between curly braces

 {1,2,3}
{1,2,3}

whereas a stem is of the form {key0 : value0, key1: value1, … }

 {‘title’ : ‘Hamlet’, ‘author’ : ‘Shakespeare’}

also, the empty set is denoted by {}.

<
• (Numbers) strictly less than,
• (String) is a strict substring of
• (Set) is a strict subset of

>
• (Numbers) strictly greater than,
• (String) is a strict superstring of
• (Set) is a strict superset of

\
The extraction operator

/
Division of numbers, alternate: ÷ (unicode 00f7), or for sets, A/B means to remove every element0of
the set B from the set A.

'
Reserved for string literals. Must be used in pairs.

"
Many languages use double quotes for strings, but QDL does not. Double quotes ae just another
character and carry no syntactical meaning. This was done to make it easy to interoperate with
languages/notations (like Java, or JSON) that do use them.

-
Subtraction of numbers

_ (underscore)
This is simply used as an alternative blank in function or variable names. Inside of modules, the
convention is that a name that starts with a double underscore is local to the scope only.

+
Addition of numbers, concatenation of strings.

;
End of statement, used in the slice definition to separate elements, e.g. [-2;4;3/7]

:
For switch and conditional expressions, used to set off the default case. E.g. 0<x?x:0 Used in stems to
separate key, value pairs, e.g. {'a':'foo', 'b':'bar'}

,
In functions, separates the elements of a list of arguments. E.g. f(x,y,z) In stems, separates key value
pairs, e.g. {'a':'foo', 'b':'bar'}

.
The index of operator for stems. E.g. a.'month'.3

Digraphs
I.e., double (or more) character operators. These are ASCII, not unicode, and any unicode alternate is
listed

->
Lambda function definition, alternate:→ (unicode 2192)

++
Increment operator for variables. Works with any number. Can be used either as a prefix (use old value,
increment) or postfix (increment, use new value)

--
Decrement operator for variables. Works with any number. Can be used either as a prefix (use old
value, increment) or postfix (increment, use new value)

[|, |]
Closed slice notation.

Alternate for [|: (unicode 27e6)⟦

Alternate for |]: (unicode 27e7)⟧

===
Documentation line start. This is position sensitive and is used for modules or for function definitions.
Alternate: » (unicode 00bb)

|^
Convert to set, taking only the values. Alternate : (unicode 22a2)⊢

<=
• (Numbers) less than or equal to,
• (String) is a substring of
• (Set) subset of

Alternate: ≤ (unicode 2264)

>=
• (Numbers) Greater than or equal to,
• (String) is a superstring of
• (Set) superset of

alternate: ≥ (unicode 2265)

<<
Is a. No alternate.

==
Equality (sets, numbers, strings), alternate: ≡ (unicode 2261)

!=
Logical not equal to, alternate: ≠ (unicode 2260)

?!
Switch expression marker, alternate: ¿ (unicode 00bf)

=~
Regular expression match, alternate: ≈ (unicode 2248)

&&
Logical and, alternate: (unicode 2227)∧

||
Logical or, alternate: (unicode 2228)∨

\!, \!>, *, \>, \!>*, \>*
All forms of the extraction operator, \. There are no alternates.

 ~|
Join along last axis, alternate: (unicode 2241).≁

:=, =:, +=, -=, *=, /=, %=, ^=
Various assignment operators. := and =: are the assignment operator and the : goes next to whatever is
being assigned. For the others (prepositional only), the operation is applied to the argument, then the
variable is updated. E.g.
 a:=5;
 a ^= 2;
 a
25

Unicode

»
See ===

¬ (logical not)
See !

µ (transpose operator)
See transpose (function).

¯ (high unary minus sign)
See -

× (multiplication)
See *.

÷ (division)
See /

 (high unary plus sign) ⁺
See +

→(lambda definition)
See ->

 (implies operator)⇒
See ?

 (null set)∅
See null

 (logical and)∧
See &&

 (logical or)∨
See ||

≈ (regular expression match)
See =~.

 (left assignment)≔
See :=

 (right assignment)≕
See =:

≠ (not equal to)
See !=

≡ (equal to alternate)
See ==

≤ (less than or equal to alternate)
See <=

≥ (greater than or equal to alternate)
See >=

 (assert statement)⊨
See assert statement

 (ceiling operator)⌈
See ceiling function

 (floor operator)⌊
See floor function

 (closed slice)⟦ ⟧
See [|, |]

 (join along last axis)≁
See ~|

(expand)⊕
See expand function

 (function reference)⊗
See @

 (reduce)⊙
See reduce function

 (mask)⌆
See mask function

(convert to set)⊢
See |^

(has value)∈
See has_value

(does not have value)∉
Equivalent it !has_value

 (for_each)∀
See for_each function

(has key)∋
See has_key function

 (exists)∃
See is_defined, is_function

 (does not exist)∄
Same as !is_defined or !is_function

∩ (set intersection)
See /\

 (set union)∪
See \/

∆ (set symmetric difference)
See %

∂ (applies operator)
See apply function

	Introduction
	Function Reference
	abs
	acos
	acosh
	&apply
	arg_count

	args
	asinh
	atan
	atanh
	box
	break
	cb_exists
	cb_read
	cb_write
	ceiling
	check_after
	check_syntax
	common_keys
	constants
	contains
	continue
	cos
	cosh
	copy
	date_ms
	date_iso
	debugger
	decode
	detokenize
	diff
	differ_at
	dim
	dir
	docs
	encode
	excise
	exclude_keys
	exp
	expand (⊕)
	file_read
	file_write
	*floor
	for_each (∀)
	for_keys
	for_lines
	for_next
	fork
	from_json
	from_uri
	funcs
	gcd
	halt
	has_key (∋, ∌)
	has_value or ∈, ∉
	hash
	head
	i
	identity
	&import
	include_keys
	index_of
	indices
	info
	input_form
	insert
	insert_at
	interpret
	is_defined (∃, ∄)
	is_function (∃, ∄)
	is_list
	&is_null
	&j_load
	&j_use
	join
	keys
	kill
	lcm
	&lib_entries
	list_keys
	ln
	&load
	&loaded
	log
	logger
	mask (⌆)
	max
	min
	mkdir
	mod
	module_import
	module_load
	module_path
	module_remove
	n
	&names
	nroot
	numeric_digits
	os_env
	pi
	pick
	print
	query
	raise_error
	random
	random_string
	rank
	reduce (⊙)
	remap
	remove
	rename
	rename_keys
	replace
	return
	reverse
	rm
	rmdir
	say
	scan
	script_args
	script_load
	&script_name
	script_path
	script_run
	set_default
	shuffle
	sin
	sinh
	size
	sleep
	sort
	star (* in extractions)
	starts_with
	sublist
	substring
	tail
	tan
	tanh
	to_boolean
	to_json
	to_lower
	to_number
	to_string
	to_upper
	to_uri
	tokenize
	transcendental functions
	transpose, µ
	trim
	unbox
	union
	Unique
	Unload
	&use
	values
	var_type
	&vars
	vfs_mount
	vfs_unmount
	ws_macro

	Symbol Reference
	Monographs
	@
	?
	~
	!
	#
	$
	%
	*
	()
	[]
	{ }
	<
	>
	
	/
	'
	"
	-
	_ (underscore)
	+
	;
	:
	,
	.

	Digraphs
	->
	++
	--
	[|, |]
	===
	|^
	<=
	>=
	<<
	==
	!=
	?!
	=~
	&&
	||
	!, !>, *, >, !>*, >*
	~|
	:=, =:, +=, -=, *=, /=, %=, ^=

	Unicode
	»
	¬ (logical not)
	µ (transpose operator)
	¯ (high unary minus sign)
	× (multiplication)
	÷ (division)
	⁺ (high unary plus sign)
	→(lambda definition)
	⇒ (implies operator)
	∅ (null set)
	∧ (logical and)
	∨ (logical or)
	≈ (regular expression match)
	≔ (left assignment)
	≕ (right assignment)
	≠ (not equal to)
	≡ (equal to alternate)
	≤ (less than or equal to alternate)
	≥ (greater than or equal to alternate)
	⊨ (assert statement)
	⌈ (ceiling operator)
	⌊ (floor operator)
	⟦ ⟧ (closed slice)
	≁ (join along last axis)
	⊕(expand)
	⊗ (function reference)
	⊙ (reduce)
	⌆ (mask)
	⊢(convert to set)
	∈(has value)
	∉(does not have value)
	∀ (for_each)
	∋(has key)
	∃ (exists)
	∄ (does not exist)
	∩ (set intersection)
	∪ (set union)
	∆ (set symmetric difference)
	∂ (applies operator)

