
QDL’s Crypto Module

Introduction

This is QDL’s module for a bit of basic cryptography.  This is not intended to be a full suite of 
cryptographic tools, but tried to capture a Pareto’s Law selection (20% of the calls that do 80% of the 
work). It lets you create RSA (Rivest–Shamir–Adleman), EC (Elliptic Curve) and AES (Advanced 
Encryption Standard, used for symmetric)  keys and encrypt or decrypt them. The basic structure is that 
of a JSON webkey as a stem. It also allows for importing and exporting JSON webkeys to files, as well 
as certain PKCS (Public Key Cryptography Standards group) formats. It can do basic reading of X 509 
certificates. 

Variable reference

$$KEY_TYPE
There is a single variable that is global, $$KEY_TYPE and this contains the following key types which 
are used in the import/export as well as key creation functions.

Key Value Use Description

jwks jwks I/E JSON webkey format

pkcs1 pkcs1 I/E PKCS 1 private key format

pkcs8 pkcs8 I/E PKCS 8 private key format

public public I/E PKCS 8 public key format (“  “  “)

x509 x509 I/E Same as PKCS 8 public and used as the public key format in 
an X 509 certificate, so many just refer to it as “x 509 format”. 

rsa rsa create RSA key

ec elliptic create Elliptic curve key

aes aes create AES (symmetric) key

Key:

I/E = used for import/export
create = key creation with create_key

Example
   crypto#import(file_path, $$KEY_TYPE.'public')

would try to import a PKCS 8 public key from the given file_path.  



QDL’s Crypto Module
Function reference

create_key

Description

Create an RSA, EC or AES key subject to given parameters. AES keys are used for symmetric 
encryption. 

Usage

create_key() - create an RSA key of 1024 bits, using the RS256 algorithm

create_key(length) create an RSA key of the given number of bits (must be a multiple of 256) 
using the RS256 algorithm

create_key(parameters.)  - Create an AES, EC or RSA key

Arguments

length – (Only for and RSA key) the number of bits. Must be a multiple of 256. See below for more.

parameters. – a stem. There are three sets of parameters available for AES RSA and Elliptic Curve 
(EC) keys.

AES key parameters

Name Req? Value

alg N The algorithm. Supported algorithms are
none (default)
A128GCM
A192GCM
A256GCM

length N Number of bits in the key. 112 <= length and length must be divisible by 8. 
Default is 256.

type Y $$KEY_TYPE.'aes' 

RSA key parameters

Name Req? Value

alg N The algorithm. Supported algorithms are
RS256 (default)
RS384



QDL’s Crypto Module
RS512

length N Number of bits in the key. Must be a multiple of 256. Defaults is 1024

type Y $$KEY_TYPE.'rsa'

EC key parameters

Name Req? Valie

alg N Supported algorithms are
ES256 (default)
ES384
ES512

curve N The curve to use.  Supported curves are
Ed25519
Ed448
P-256 (default)
P-256K
P-384
P-521
X25519
X448
secp256k1

type Y $$KEY_TYPE.'elliptic'

Output

A stem with the resulting key.

Examples

An AES key at 256 bits.

print(crypto#create_key({'type':'aes','alg':'A256GCM':'length':256}))
   alg : A256GCM
     k : nNgJT77SxxN0l57nCw2WJq0Q3IFaKt5T-
         Lz4p7GfnHocIjIwEMZqRlr9qBnNoK7g9mmvF33kx4JVCyaXaGHSkQ
   kid : 6RI6s6fAX50
   kty : oct

An RSA key. The default is 1024 bits. Display width is set to 72, since some are quite long

  print(crypto#create_key(), 72)
alg : RS256
  d : hDzkT_3B3GKajhSDBPA_koRQOwO-KCux_VDEG58yH4wdFjEx1xLefM14xS_w9K2BbC



QDL’s Crypto Module
      MSY33TCQ5XWPBexGuM-RbfQtZ5ZSYalVWw_QGyPzY2dnMAFAiwCKAxblDElkkKWo5o
      QD9yD71HrkEd1G7CAGby_k8jbpx7x6TSQolX-J0
 dp : wsnT1lf5wjXkcMon-lpXbYD-TUdZ1EwOU398zGU85GQ37hnQ1BHfsxUNscKHcLjsQF
      fIcgf0dEw-SjCZJG0SsQ
 dq : JSwRjLA6aFqYA5gQ95ie86nyzHdR5BZYYduyTP2tK07AjaGhQyY9MLyH5hUdWuoP71
      cpntL1Y_zhOMEGBTioVw
  e : AQAB
iat : 1735045281
kid : CCB6D75A73F1F2F8
kty : RSA
  n : mngD5D-5cxK-d3FQmcP2y61QpU274DuL1XflX3KTv80sKASGydsJ6eNciJREQ26nmh
      FStGO82P-PKn4k03RBNA7V5Ukpm5wjH6-3yaj12kAAOxCfBC12nnJZX50xLHhN2qq5
      0fk6DzwQoyc7gCxSCo5lPbwJvSLP00jGS96ydb0
  p : 28Rx824bi5SRAXB5BXmb1aiLZeHH7CQdVOyTJNo12ComptfWdUa047WuljH22PjmaL
      sKg7irMNV01ZTDamW2Tw
  q : s--QOmwtKgOs2Dy-g5ggwS9CvEDwH-v3Tla3djISgs5wSPOrdOaczm-b6S2KID8h0N
      NWd7NjMS-KHlVnmnmcMw
 qi : dIOAlQiVjV5fYI1mPI7S6rcTNvjpYJqsZeVJvHovUEdUdPOf16jyaNel_1xttSTSRb
      5uvVVaCU2i19ojUtjZgQ
use : sig

An EC key with specified algorithm and curve.  

  print(crypto#create_key({'type':'elliptic','alg':'ES256','curve':'P-256'}))
   alg : ES256
     d : DVrqf9-yXI37aWVnUmkaRQcH-KQlrCUHxtlltdXoBb4
   kid : 7F50DDCC6B757372
   kty : EC
   use : sig
     x : fdc_cSgAiTKYm2byYD67GnF8VoE82g2n6jXU_JzFi9I
     y : XkzpiKF1LFmWzWnDW85dt0YUUq-VaKK4ovPmBQ_2hgY

decrypt

Description

Decrypt (i.e., reverse the encryption) for string or stems/sets of them.

Usage
decrypt(arg | arg., key.)

ecrypt(arg | arg., key.,  use_private_key)

Arguments

key. - a key to be used. Only RSA or AES keys are supported

arg – a simple string,  or a set of strings. Any non-string entries are simply returned unchanged.



QDL’s Crypto Module
arg. – a stem of strings. Each entry will be decrypted

use_private_key –  Use the RSA private key to decrypt (default is false). 

Output

If a simple string, the string is decrypted. If a stem or set, each element is decrypted. If the entry is not a 
string, it is not touched. 

Example

Create a symmetric key and encrypt a string, then decrypt it. Note there are no length restrictions on the 
string for AES keys.

   aes. := crypto#create_key({'type':'aes', 'length' : 1024})
   crypto#encrypt('The quick brown fox', aes.)
NS5Uov65heE66PVYdg9fkM7vjw
   crypto#decrypt('NS5Uov65heE66PVYdg9fkM7vjw', aes.)
The quick brown fox

Another example using an RSA key. This uses the default key length of 1024 bits.

   rsa. := crypto#create_key()
   x := crypto#encrypt('The quick brown fox', rsa.)
   x
aQFQOZoCW6i8M4pmDdOCB9KgxPwvmUSZcbmwbOyWG6RwzP…
   crypto#decrypt(x, rsa.)
The quick brown fox

encrypt

Description

Encrypt a string or stem/set of them using a key. Only RSA or AES keys are used.

Usage
encrypt(arg | arg., key.)

encrypt(arg | arg., key.,  use_private_key)

Arguments

key.  - the stem for the key



QDL’s Crypto Module
arg – the target of the encyption. May be a string or set of them. Note that in complex arguments, non-
strings are ignored.

arg.  - a stem of strings. Each will be separately encrypted.

use_private_key  - if true, encrypt with the RSA private key. Default is true. 

Output

The object with its entries encrypted. Note that and RSA key will use public/private key encryption (so 
the default is to encrypt using the private key.) RSA keys strict the size of the input to being less than 
the key size. An AES key is a symmetric binary key. The encryption used here is quite basic  and its 
inverse function is decrypt. 

Examples

Nota Bene: The standard requires that the string to be encrypted is shorter (in bits) than the key length. 
For 1024 bits this means there are at most 1024/8 = 128 characters allowed, less a bit for overhead. In 
the next example, we create a 200 character long string and try to encrypt it using the 1024 bit key. It 
gives an error message and tells you the maximum size of the string you can process:

   rsa. := crypto#create_key()
   crypto#encrypt( random_string(200), rsa.)
illegal argument:encrypt could not process argument for key='0' with value 
='kJS5_Q8oC1... (Data must not be longer than 117 bytes) At (1, 7)

Compare this with and AES key that has no restriction. We encrypt a 1000 character (8000 bit) string.

   aes. := crypto#create_key({'type':'AES', 'length' : 1024})
   y crypto#encrypt(random_string(1000), aes.)≔
   size(y)
1779
   y
KXVLz-SGqvg0vKJQVgBW6MflwNZvzdPrPqkuPFI6LQ7eFNP…

Example of encrypting a stem.

In this example we can get around the length restriction by having a stem of strings. Each entry is 
encrypted:

   Jabberwocky. ['’Twas brillig, and the slithy toves',≔
                  '   Did gyre and gimble in the wabe;',
                  'All mimsy were the borogoves,',
                  '   And the mome raths outgrabe.']
   j. crypto#encrypt( jabberwocky., rsa.)≔



QDL’s Crypto Module
   print(crypto#encrypt(rsa., jabberwocky.), 72)
0 : UosA6cdoAHJFOl7f9WhRI6ZgJ7CqHlbxRyhf8t4SqRb9fNGZhZJuTqszo8dP2HLbOTCm
    YmQr3CprCseQOKhW84fPx3wvqcB12hSu2PNqhfiYYEqeyBj5XdTlMAVvsZeco2GW3tng
    YSbGCgqczy_Dqud_-7KswUyOrz4QPL4e3hE
1 : K1c2DsHRJN2_-ArqkbTzrOwQxdhMhBlg9NyuTcKj5rgp1WQpgpKlyRwwWktAMT9KNmO6
    FqSsbO-IXrJxHxbPgQswzTzgTDO89PziM5ajp-EJFcMTZAP-rWwTbh3Y3OxaUBqcU2qX
    MSjc53higmmkuvkzyVdpDakPPUhwyu1bur0
2 : J4wVKF44Sj-STcvHMXojR82Mht362DCtPh5gLQ0DP_SgX62ZHLq8Uyp7UoIP92KTVZjT
    LTl6G7zzCUQHt5cTPgajIXlbOeBD81kV4-akYT8nzW2i4LzyGQ6D4JjGhqDiO0YLZzm1
    4gth-TMKrzGz_Rz7lmLWhlvLMPYMR3FY3Ao
3 : aoe42_bmni1iQT6djFO4ZFAANR4G0OyAkMLzcexwUz9oWgCVs7-r8IPJmS135-495l0J
    LpTjlBV9orrjmkYIQl4P9sfz3qMeyUEWPZNAGYIIcbHvDTKHGCMk1aXKNgGs5neBi8fx
    W2-t-D4Ch3qKfMt1vVbHPRyrayyOWUQUj7M
   crypto#decrypt(j., rsa.)
[’Twas brillig, and the slithy toves,   
   Did gyre and gimble in the wabe;,
  All mimsy were the borogoves,,
   And the mome raths outgrabe.]

Example of encrypting a set with a symmetric (AES) key.

Complex data structures like sets are processed in full. A simple example is the following

   crypto#encrypt({'a',{'b'}}, aes.)
{AA,{Aw}}
   crypto#decrypt({'AA',{'Aw'}}, aes.)
{a,{b}}

Note that the nesting of sets is preserved.

export

Description

Export a key or set of keys to RFC 7517 format (JSON Web Key) or various PKCS formats and write 
to storage.

Usage
export_jwks(keys., file_path)

export_jwks(keys., file_path ,type) 

Arguments

keys. - either a single key or a set of keys.



QDL’s Crypto Module
file_path - the fully qualified path for the output.

type – If omitted, the default is JWKS. Supported file types are

Type Req? Description

jwks N Use RFC 7517 format. This is the default

pkcs8 Y Use PKCS 8 PEM format

x509 Y Use the PEM format in X 509 certificates (which is really 
just a subset of PKCS 1).

Nota Bene: We do not support writing PKCS 1 files at this time, just PKCS 8. the reason is that PKCS 
1 is mostly deprecated and hard to get to interoperate. PKCS 8 is now the universal standard. We do, 
however, read PKCS 1 files fine.

Output

This returns true if the operation successfully wrote the file. Otherwise, an error will be raised. Multiple 
keys are supported in JWKS, but only single keys in PKCS formats. To write multiple keys in PKCS 
would require either a PKCS 12 or Java keystore (JKS) file which would also require PKCS 5 
(password protection) support, hence is currently not supported in QDL.

Examples

  kk. := create_key(1024, 3)
  export(kk., '/tmp/keys.jwk')
true

This means that the set of keys was written in the correct format to the given file.

from_jwt

Description

Take a JWT or stem of them and convert to their stem payload. No verification is done, call verify for 
that. Note that non-JWT strings and  other values (such as integers) will simply be returned unaltered.

Usage

from_jwt(jwt | jwt.) 



QDL’s Crypto Module
Arguments

jwt – a single string that is a JWT.

jwt.– a stem or set of JWTs

Output

Returns a stem (for a single jwt) that is the payload of the JWT. If you supply a stem of JWTs, each will 
be converted to its payload. 

Example

The keys and payload are exactly as in the example from the section on to_jwt, so look there.

   rr crypto#to_jwt(p., rsa.);≔
   crypto#from_jwt(rr)
{a:q, b:{s:t}}

In this case, a simple stem, p. is created along with an rsa. key. It (p.) is turned into a JWT, rr, then 
back to show this works. To show how this operates on a more general stem,

   crypto#from_jwt({'A':rr,'B':'foo'})
{A:{a:q, b:{s:t}}, B:foo}

A stem that consists of the JWT and a random string is used. The JWT as expected is converted back to 
its payload, the non-JWT is unaltered.

To check verification, 

   crypto#verify({'A':rr,'B':'foo'}, rsa.)
{A:true, B:false}

which shows that the entry for A is a valid JWT, the entry for B is not.

import

Description

Read JSON webkeys (as per RFC 7517) or a PKCS format key

Usage
import_jwks(file_path)
import_jwks(file_path, type)



QDL’s Crypto Module
Arguments

file_path - the fully qualified path to the file.

type – The type of the key. Supported types are

Type Req? Description

jwks N Use RFC 7517 format. This is the default

pkcs1 Y Use PKCS 1 (deprecated RSA format).

pkcs8 Y Use PKCS 8 PEM format

x509 Y Use the PEM format in X 509 certificates (which is really 
just a subset of PKCS 1).

.

Output

This returns a stem of of keys for JWKS if there are multiples, or a single key for JWKS if there is one 
and a single key for PKCS format.

Examples
   keys. := import_jwks('/tmp/keys.jwk');

Since there were no errors, the set of keys in RFC 7517 format was successfully imported and 
converted to a stem. Note that if there was one single key in the file, a single key would result.

read_oid

Description

Read an entry from an X 509 certificate using its OID (Object Identifier). This is a low-level operation 
but is often about the only way to get certain values.

Usage
read_oid(cert., oid | oids.)

Arguments

cert.  - stem that represents the X 509 certificate.

oid  - A single OID (of the form x.y.z….) You must know this



QDL’s Crypto Module
oids.  - A stem of oids.  

Output

If a single oid is requested, the response is the base64 encoding of the ASN 1.1 octet stream. Since each 
OID specifies how to interpret this binary array, this is about the best we can do in general.

If a stem of OIDs is sent, each entry of the will be the base64 encoded octet stream.

Note that when you read a certificate, the criticial and non-criticial OIDs are returned. 

Example

The GitHub cert that is read in the read_x509 section is used here.

   crypto#read_oid(cert., '2.5.29.14')
BBYEFDtoPzQ69Uc0yu-mTj2avV5uesyf

This reads a single OID.  Again, the octet stream is encoded faithfully, but there is no canonical way to 
interpret a general ASN 1.1 entry.

read_x509

Description

Read an X 509 certificate or certificate chain. We say read instead of import since  you cannot alter a 
certificate without invalidating it, hence there is no way to write any changes.

Usage
read_x509(file_path)

Arguments

file_path  - the path (VFS paths are of course supported) to the file holding the cert(s).

Output

If there is a single certificate, then a stem representing that. If there is a certificate chain, then the result 
is a list of the certificates in the order found.



QDL’s Crypto Module
Example

in this example, I downloaded the certificate from the GitHub main site and am going to read it. A bit 
of truncation and formatting is done to make it display nicer.

         cert.:=crypto#read_x509('/home/ncsa/Downloads/github-com.pem')
print(cert.)
       algorithm : {name:SHA256withECDSA, oid:1.2.840.10045.4.3.2}
           email : www.github.com
         encoded : -----BEGIN CERTIFICATE-----MIIEozCCBEmgAwIBAgIQT...
          issuer : {alt_names:{dNSName:www.github.com}, 
                   dn:CN=Sectigo ECC Domain Validation Secure Server CA, O=Sectigo
                      Limited, L=Salford, ST=Greater Manchester, C=GB,
                   x500:CN=Sectigo ECC Domain Validation Secure Server CA,O=Sectigo
                        Limited,L=Salford,ST=Greater Manchester,C=GB}
       not_after : 1741391999000
      not_before : 1709769600000
            oids : {critical:[2.5.29.15,2.5.29.19], 
                    noncritical:[1.3.6.1.4.1.11129.2.4.2,
                    1.3.6.1.5.5.7.1.1,
                    2.5.29.14,
                    2.5.29.17,
                    2.5.29.32,
                    2.5.29.35,
                    2.5.29.37]}
   serial_number : 103892495973767669722220901035501109925
       signature : MEUCIQCu7Yxw-vR43BxY24MRjRr-sbNdF9Gub7pd9l5LOFhl...
         subject : {alt_names:{dNSName:www.github.com}, 
                   dn:CN=github.com, x500:CN=github.com}
         version : v3

Note that the OIDs are listed. Several of these are interpreted and returned as standard values. 

Getting a stem of OIDs

   crypto#read_oid(cert., {'a':'2.5.29.14','b':'2.5.29.17', 'c':'2.5.29.32'})
{a:BBYEFDtoPzQ69Uc0yu-mTj2avV5uesyf, 
 b:BB4wHIIKZ2l0aHViLmNvbYIOd3d3LmdpdGh1Yi5jb20,
 c:BEIwQDA0BgsrBgEEAbIxAQICBzAlMCMGCCsGAQUFBwIBFhdodHRwczovL3NlY3RpZ28uY2
   9tL0NQUzAIBgZngQwBAgE
}

Each entry is returned with its value.



QDL’s Crypto Module
  
to_public

Description

Return the public part of a key

Usage
to_public(key. | keys.)

Arguments

key.  - a single key stem

keys.  - a stem of of key stems.

Output

Each key has its public parts returned. In the case of an symmetric key, the key itself is returned. 

Example

This takes a single RSA key and returns the public part:

print(crypto#to_public(rsa.), 72)
alg : RS256
  e : AQAB
kid : CCB6D75A73F1F2F8
kty : RSA
  n : AJp4A-Q_uXMSvndxUJnD9sutUKVNu-A7i9V35V9yk7_NLCgEhsnbCenjXIiURENup5
      oRUrRjvNj_jyp-JNN0QTQO1eVJKZucIx-vt8mo9dpAADsQnwQtdp5yWV-dMSx4Tdqq
      udH5Og88EKMnO4AsUgqOZT28Cb0iz9NIxkvesnW9
use : sig

to_jwt

Description

Sign a stem as a JWT using an RSA or EC key. This turns a given stem into an RFC 7517 compliant 
JWT (JSON web token).  

Usage

to_jwt(payload.) – create an unsigned JWT



QDL’s Crypto Module
to_jwt(payload., key.) – create the JWT, also creating the header

to_jwt(header., payload., key.) – use the supplied header, adding only required information.

Arguments

header. – a stem of information about the way the payload is signed.

payload. – the stem. It will be turned into a JSON object then processed, so not every stem can be 
signed this was (e.g., JSON has no concept of a set, so set entries are converted to a list).

key. – the RSA or EC key to use.

Output

A JWT is of the form header.payload.signature unless  it is unsigned, in which case it is of the 
form header.payload. (and the trailing period is required!). You can create an unsigned JWT also by 
supplying a header with the “alg” set to “none”.

Example. An unsigned JWT

Create an unsigned JWT

   c := j_load('crypto');
   jwt := c#to_jwt{'a':{'b':[;3]}});
   jwt
eyJ0eXAiOiJKV1QiLCJhbGciOiJub25lIn0.eyJhIjp7ImIiOlswLDEsMl19fQ.
 decode(tokenize(jwt)\[0,1])
[{"typ":"JWT","alg":"none"},{"a":{"b":[0,1,2]}}]

Note that the output is JSON here. You would need to convert it to a stem or just use the from_jwt 
method

Example. A signed JWT
   p. {'a':'q','b':{'s':'t'}};≔
   crypto j_load('crypto');≔
   rsa. crypto#create_key(2048);≔
   rr crypto#to_jwt(p., rsa.);≔
   rr
eyJraWQiOiI3REQ1RDJDMkJCMUE2MzdBIiwidHlwIjoiSldUIiwiYWxnIjoiUlMyNTYifQ.
EyJhIjoicSIsImIiOnsicyI6InQifX0.
Qqd9QotTC0... 

This uses an RSA key (which has to be at least 2048 bytes long). 

If you prefer an example using an elliptic key



QDL’s Crypto Module
   p. {a':'q','b':{'s':'t'}};≔
   crypto _load('crypto');≔
   ec.  crypto#create_key({'type':'EC'});≔
   ss  crypto#to_jwt(p., ec.);≔
   ss;
eyJraWQiOiI5RDRCOTM0QjEyMkY4QkFBIiwidHlwIjoiSldUIiwiYWxnIjoiRVMyNTYifQ.
EyJhIjoicSIsImIiOnsicyI6InQifX0.
4g7p54TXhWkxctB...

Note that the headers are different. In the case of the elliptic curve that is

   decode('eyJraWQiOiI5RDRCOTM0QjEyMkY4QkFBIiwidHlwIjoiSldUIiwiYWxnIjoiRVMyNTYifQ')
{"kid":"9D4B934B122F8BAA","typ":"JWT","alg":"ES256"}

Example. Sending a custom header

In this example, we’ll send along a custom header that includes the time issued at. Just because, we’ll 
how how to print the raw token, by chopping it up at each “.” and decoding the result. The header and 
payload are in JSON, not stems! As expected, the header shows the iat (issued at time) claim and the 
payload is as expected. Note that the signature, which is simply an array of bytes, decodes as gibberish, 
so is not terribly interesting by itself. This does show all the parts of a JWT nicely though.

   ec_jwt := crypto#to_jwt({'iat':date_ms()%1000},p., ec.);
print(decode(tokenize(ec_jwt,'.')))
   0 : {"typ":"JWT","iat":1735561786.341000000000000,"alg":"ES256","kid":"9D4B934B122F8BAA"}
   1 : {"a":"q","b":{"s":"t"}}
   2 : n#]_W ;# ##0/ K# = r��� � � � �� �ܵ" D P mT*. & '[#��� ��� � �� � �Fm@R?# N= #� �� �

Note To get the issued at time in seconds, we used % and not division, since division would have given 
us a decimal in the header, not an integer.

verify

Description

Verify a JWT or aggregate (stem or set) of them against a key.

Usage

verify(jwt | jwt., key.) 

Arguments

jwt – A JWT 

mailto:Fm@R


QDL’s Crypto Module
jwt. – a stem of JWTs

key. – the key that was used to sign them.

Output

A left conformable object that has true for each valid signature and false otherwise. Unrecognized 
arguments (such as a non-string or non-JWT string) return false.

Example

Bare bones to show that verify checks what signing does. The values for the key and payload are from 
the to_jwt function:

   crypto#verify(crypto#to_jwt(p., ec.), ec.);
true

Next, we make a list of JWTs and verify them:

   jwt. [≔
          crypto#to_jwt(p.), // unsigned
          crypto#to_jwt(p., ec.), // basic
          crypto#to_jwt({'iat':date_ms()%1000}, p., ec.) // custom header
         ];
   crypto#verify(jwt., ec.);
[true,true,true]

Which shows that each entry of the list is checked. If we submitted non-JWTs each would be flagged as 
false. In this next example,we append a string and an integer. The contract for the function is to check if 
the arguments can be verified with the given key, hence the result

   crypto#verify(jwt.~'foo'~42, ec.);
[true,true,true,false,false]


	Variable reference
	$$KEY_TYPE

	Function reference
	create_key
	AES key parameters
	RSA key parameters
	EC key parameters

	decrypt
	encrypt
	export
	from_jwt
	import
	read_oid
	read_x509
	to_public
	to_jwt
	verify


