QDL'’s Crypto Module

Introduction

This is QDL’s module for a bit of basic cryptography. This is not intended to be a full suite of
cryptographic tools, but tried to capture a Pareto’s Law selection (20% of the calls that do 80% of the
work). It lets you create RSA (Rivest—Shamir—Adleman), EC (Elliptic Curve) and AES (Advanced
Encryption Standard, used for symmetric) keys and encrypt or decrypt them. The basic structure is that
of a JSON webkey as a stem. It also allows for importing and exporting JSON webkeys to files, as well
as certain PKCS (Public Key Cryptography Standards group) formats. It can do basic reading of X 509
certificates.

Variable reference

$SKEY_TYPE

There is a single variable that is global, $$KEY_TYPE and this contains the following key types which
are used in the import/export as well as key creation functions.

Key Value Use Description
jwks jwks IVE JSON webkey format
pkecsl pkecsl IVE PKCS 1 private key format
pkcs8 pkcs8 I/E PKCS 8 private key format
public public IVE PKCS 8 public key format (“ “)
x509 x509 IVE Same as PKCS 8 public and used as the public key format in
an X 509 certificate, so many just refer to it as “x 509 format”.
rsa rsa create |RSA key
ec elliptic create |Elliptic curve key
aes aes create |AES (symmetric) key

Key:

I/E = used for import/export
create = key creation with create_key

Example
crypto#import(file_path, $$KEY_TYPE. 'public')

would try to import a PKCS 8 public key from the given file_path.

QDL'’s Crypto Module

Function reference
create_key

Description

Create an RSA, EC or AES key subject to given parameters. AES keys are used for symmetric
encryption.

Usage
create_key() - create an RSA key of 1024 bits, using the RS256 algorithm

create_key(length) create an RSA key of the given number of bits (must be a multiple of 256)
using the RS256 algorithm

create_key(parameters.) - Create an AES, EC or RSA key

Arguments
length — (Only for and RSA key) the number of bits. Must be a multiple of 256. See below for more.

parameters. — a stem. There are three sets of parameters available for AES RSA and Elliptic Curve
(EC) keys.

AES key parameters

Name Req? Value
alg N The algorithm. Supported algorithms are
none (default)
A128GCM
A192GCM
A256GCM
length N Number of bits in the key. 112 <= length and length must be divisible by 8.
Default is 256.
type Y $SKEY_TYPE.'aes'

RSA key parameters

Name Req? Value

alg N The algorithm. Supported algorithms are
RS256 (default)
RS384

QDL'’s Crypto Module

RS512
length N Number of bits in the key. Must be a multiple of 256. Defaults is 1024
type Y $SKEY_TYPE.rsa’

EC key parameters

Name Req? Valie

alg N Supported algorithms are
ES256 (default)

ES384

ES512

curve N |The curve to use. Supported curves are
Ed25519

Ed448

P-256 (default)

P-256K

P-384

P-521

X25519

X448

secp256k1

type Y [$$KEY_TYPE. elliptic'

Output

A stem with the resulting key.

Examples
An AES key at 256 bits.

print(crypto#create_key({'type':'aes',6 'alg':'A256GCM': "' length':256}))
alg : A256GCM
k : nNgJT77SxxXNO157nCw2WJqOQ3IFaKt5T-

Lz4p7GfnHocIjIWEMZgR1r9gBnNoK7g9mmvF33kx4JVCyaXaGHSkQ
kid : 6RI6S6TAX50
kty : oct

An RSA key. The default is 1024 bits. Display width is set to 72, since some are quite long

print(crypto#create key(), 72)
alg : RS256

d : hDzkT_3B3GKajhSDBPA_ koRQOwO-KCux_VDEG58yH4wdFjEx1xLefM14xS_w9K2BbC

QDL'’s Crypto Module

MSY33TCQ5XWPBexGuM-RbfQtz5ZSYalVWw_QGyPzY2dnMAFAiwCKAXb1DE LkkKWo50
QD9YyD71HrkEd1G7CAGby_k8jbpx7x6TSQo1X-J0

: wsnT11f5wjXkcMon- 1pXbYD- TUdZ1EwOU3982z6U856Q37hnQ1BHfsxUNscKHcLjsQF
fIcgfOdEW-SjCZJGOSsQ

: JSWRjLA6aFqYA59gQ95ie86nyzHdR5BZYYduyTP2tK07AjaGhQyY9MLYH5hUdWuoP71
cpntL1lY_zhOMEGBTioVw

: AQAB

: 1735045281

: CCB6D75A73F1F2F8

: RSA

: mngD5D-5¢cxK-d3FQmcP2y61QpU274DuL1Xf 1X3KTv80sKASGydsJ6eNciJREQ26nmh
FStG082P-PKn4kO3RBNA7V5Ukpm5wjH6 - 3yaj12kAAOXCTBC12nnJZX50xLHhN2qq5
0fk6DzwQoyc7gCxSCo51PbwIvSLP00jGS96ydbo

: 28Rx824bi5SRAXB5BXmblailZeHH7CQdVOyTJINol12ComptfWdUa®47WuljH22PjmaL
sKg7irMNVO1ZTDamW2Tw

: s--QO0mwtKg0s2Dy-g5ggwS9CVEDwWH-v3T1la3djISgs5wSPOrdOaczm-b6S2KID8hON
NWd7NjMS -KH1VnmnmcMw

: dIOA1QiVjV5fYI1ImPI7S6rcTNVjpYJqsZeVIvHovUEdUdPOT16jyaNel 1xttSTSRb
5uvVVvaCu2i190jUtjZgQ

. sig

An EC key with specified algorithm and curve.

print(crypto#create key({'type':'elliptic',6 'alg':'ES256', 'curve':'P-256'}))
alg : ES256

d : DVrqf9-yXI37awVvnUmkaRQcH-KQlrCUHxt 11tdXoBb4
kid : 7F50DDCC6B757372

kty : EC

use : sig
x : fdc_cSgAiTKYm2byYD67GnF8VOE82g2n6jXU_JzFi9I
y : XkzpiKF1LFmWzWnDW85dtOYUUq-VaKK4ovPmBQ_2hgY

decrypt

Description

Decrypt (i.e., reverse the encryption) for string or stems/sets of them.

Usage
decrypt(arg | arg., key.)

ecrypt(arg | arg., key., use_private_key)

Arguments
key. - a key to be used. Only RSA or AES keys are supported

arg — a simple string, or a set of strings. Any non-string entries are simply returned unchanged.

QDL'’s Crypto Module

arg. - astem of strings. Each entry will be decrypted

use_private_key - Use the RSA private key to decrypt (default is false).

Output

If a simple string, the string is decrypted. If a stem or set, each element is decrypted. If the entry is not a
string, it is not touched.

Example

Create a symmetric key and encrypt a string, then decrypt it. Note there are no length restrictions on the
string for AES keys.

aes. := crypto#create key({'type':'aes', 'length' : 1024})
crypto#encrypt('The quick brown fox',6 aes.)
NS5U0v65heE66PVYdg9TkM7vjw

crypto#decrypt ('NS5Uov65heE66PVYdg9fkM7vijw', aes.)
The quick brown fox

Another example using an RSA key. This uses the default key length of 1024 bits.

rsa. := crypto#create_key()
x := crypto#encrypt('The quick brown fox', rsa.)
X

aQFQ0ZoCW61i8M4pmDdOCBIKgXPwvmUSZchmwbOyWG6RWZP...
crypto#decrypt(x, rsa.)
The quick brown fox

encrypt

Description
Encrypt a string or stem/set of them using a key. Only RSA or AES keys are used.

Usage
encrypt(arg | arg., key.)

encrypt(arg | arg., key., use_private_key)

Arguments
key. - the stem for the key

QDL'’s Crypto Module

arg - the target of the encyption. May be a string or set of them. Note that in complex arguments, non-
strings are ignored.

arg. - astem of strings. Each will be separately encrypted.

use_private_key - if true, encrypt with the RSA private key. Default is true.

Output

The object with its entries encrypted. Note that and RSA key will use public/private key encryption (so
the default is to encrypt using the private key.) RSA keys strict the size of the input to being less than
the key size. An AES key is a symmetric binary key. The encryption used here is quite basic and its
inverse function is decrypt.

Examples

Nota Bene: The standard requires that the string to be encrypted is shorter (in bits) than the key length.
For 1024 bits this means there are at most 1024/8 = 128 characters allowed, less a bit for overhead. In
the next example, we create a 200 character long string and try to encrypt it using the 1024 bit key. It
gives an error message and tells you the maximum size of the string you can process:

rsa. := crypto#create_key()
crypto#encrypt(random_string(200), rsa.)

illegal argument:encrypt could not process argument for key='0' with value
='kJS5_Q80C1... (Data must not be longer than 117 bytes) At (1, 7)

Compare this with and AES key that has no restriction. We encrypt a 1000 character (8000 bit) string.

aes. := crypto#create key({'type':'AES', 'length' : 1024})
y =crypto#encrypt(random_string(1000), aes.)
size(y)

1779

y
KXVLz-S6qvgovKIQVgBW6Mf LlwNZvzdPrPgkuPFI6LQ7€eFNP...

Example of encrypting a stem.

In this example we can get around the length restriction by having a stem of strings. Each entry is
encrypted:

Jabberwocky. =[''Twas brillig, and the slithy toves',
' Did gyre and gimble in the wabe;',

'All mimsy were the borogoves, ',
! And the mome raths outgrabe.']
j. =crypto#encrypt(jabberwocky., rsa.)

QDL'’s Crypto Module

pr1nt(crypto#encrypt(rsa , Jjabberwocky.), 72)

: UosA6cdoAHIFO17f9WhRI6ZgJ7CqH1lbxRyhf8t4SqRb9TfNGZhZJuTqszo8dP2HLbOTCm
YmQr3CprCseQOKhW84fPx3wvqcB12hSu2PNghfiYYEqeyBj5XdTIMAVvsZeco2GW3tng
YSbGCgqczy Dqud_-7KswUyOrz4QPL4e3hE

: K1c2DsHRJIN2_-ArqkbTzrowQxdhMhB1g9NyuTcKj5rgpi1WQpgpKLlyRwwWktAMTOKNmMO6
FqSsb0-IXrJxHxbPgQswzTzgTD0O89PziM5ajp-EJFCMTZAP - rWwwTbhh3Y30xaUBgcU2qgX
MSjc53higmmkuvkzyVdpDakPPUhwyulbur0

: JAwVKF44Sj -STcvHMX0jR82Mht362DCtPh5gLQODP_SgX62ZHLq8Uyp7U0IP92KTVZ]T
LT16672zCUQHt5cTPgajIX1b0eBD81kV4-akYT8nzW2i4LzyGQ6D4JjGhqDi00YLZZm1
4gth-TMKrzG6z_Rz7 lmLWhlvLMPYMR3FY3A0

: aoed42_bmniliQT6djF04ZFAANR4GOOYAKMLzcexwUz9oWgCVs7-r8IPImS135-49510J
LpTj lBV9orrjmkYIQ4P9sfz3qMeyUEWPZNAGYIIchHVDTKHGCMk1aXKNgGs5neBi8fx
W2-t-D4Ch3qKfMt1vVbHPRyrayyOwuQUj7M

crypto#decrypt(j., rsa.)
["Twas brillig, and the slithy toves,
Did gyre and gimble in the wabe;,
All mimsy were the borogoves,,
And the mome raths outgrabe.]

Example of encrypting a set with a symmetric (AES) key.
Complex data structures like sets are processed in full. A simple example is the following

crypto#encrypt({'a',{'b'}}, aes.)
{AA, {Aw}}

crypto#decrypt({'AA',{'Aw'}}, aes.)
{a, {b}}

Note that the nesting of sets is preserved.

export

Description

Export a key or set of keys to RFC 7517 format (JSON Web Key) or various PKCS formats and write
to storage.

Usage
export_jwks(keys., file_path)

export_jwks(keys., file_path ,type)

Arguments

keys. - either a single key or a set of keys.

QDL'’s Crypto Module

file_path - the fully qualified path for the output.

type — If omitted, the default is JWKS. Supported file types are

Type Req? Description

jwks N Use RFC 7517 format. This is the default

pkcs8 Y Use PKCS 8 PEM format

x509 Y Use the PEM format in X 509 certificates (which is really
just a subset of PKCS 1).

Nota Bene: We do not support writing PKCS 1 files at this time, just PKCS 8. the reason is that PKCS
1 is mostly deprecated and hard to get to interoperate. PKCS 8 is now the universal standard. We do,
however, read PKCS 1 files fine.

Output

This returns true if the operation successfully wrote the file. Otherwise, an error will be raised. Multiple
keys are supported in JWKS, but only single keys in PKCS formats. To write multiple keys in PKCS
would require either a PKCS 12 or Java keystore (JKS) file which would also require PKCS 5
(password protection) support, hence is currently not supported in QDL.

Examples

kk. := create_key(1024, 3)
export(kk., '/tmp/keys.jwk')

true
This means that the set of keys was written in the correct format to the given file.

from_jwt

Description

Take a JWT or stem of them and convert to their stem payload. No verification is done, call verify for
that. Note that non-JWT strings and other values (such as integers) will simply be returned unaltered.

Usage
from_jwt(jwt | jwt.)

QDL'’s Crypto Module

Arguments
jwt — a single string that is a JWT.

jwt.— a stem or set of JWTs

Output

Returns a stem (for a single jwt) that is the payload of the JWT. If you supply a stem of JWTs, each will
be converted to its payload.

Example

The keys and payload are exactly as in the example from the section on to_jwt, so look there.

rr =crypto#to_jwt(p., rsa.);
crypto#from_jwt(rr)

{a:q, b:{s:t}}

In this case, a simple stem, p. is created along with an rsa. key. It (p.) is turned into a JWT, rr, then
back to show this works. To show how this operates on a more general stem,

crypto#from_jwt({'A':rr,'B':'foo0'})

{A:{a:q, b:{s:t}}, B:foo}

A stem that consists of the JWT and a random string is used. The JWT as expected is converted back to
its payload, the non-JWT is unaltered.

To check verification,

crypto#verify({'A':rr,'B':"'foo'}, rsa.)

{A:true, B:false}

which shows that the entry for A is a valid JWT, the entry for B is not.
import

Description

Read JSON webkeys (as per RFC 7517) or a PKCS format key
Usage

import_jwks(file_path)
import_jwks(file_path, type)

QDL'’s Crypto Module

Arguments
file_path - the fully qualified path to the file.

type — The type of the key. Supported types are

Type Req? Description

jwks N Use RFC 7517 format. This is the default

pkecsl Y Use PKCS 1 (deprecated RSA format).

pkcs8 Y Use PKCS 8 PEM format

x509 Y Use the PEM format in X 509 certificates (which is really
just a subset of PKCS 1).

Output

This returns a stem of of keys for JWKS if there are multiples, or a single key for JWKS if there is one
and a single key for PKCS format.

Examples

keys. := import_jwks('/tmp/keys.jwk');

Since there were no errors, the set of keys in RFC 7517 format was successfully imported and
converted to a stem. Note that if there was one single key in the file, a single key would result.

read oid

Description

Read an entry from an X 509 certificate using its OID (Object Identifier). This is a low-level operation
but is often about the only way to get certain values.

Usage
read_oid(cert., oid | oids.)

Arguments

cert. - stem that represents the X 509 certificate.

oid - Asingle OID (of the form x.y.z....) You must know this

QDL'’s Crypto Module

oids. - A stem of oids.

Output

If a single oid is requested, the response is the base64 encoding of the ASN 1.1 octet stream. Since each
OID specifies how to interpret this binary array, this is about the best we can do in general.

If a stem of OIDs is sent, each entry of the will be the base64 encoded octet stream.

Note that when you read a certificate, the criticial and non-criticial OIDs are returned.

Example
The GitHub cert that is read in the read_x509 section is used here.

crypto#read_oid(cert., '2.5.29.14')

BBYEFDtoPzQ69UcOyu-mTj2avV5uesyf

This reads a single OID. Again, the octet stream is encoded faithfully, but there is no canonical way to
interpret a general ASN 1.1 entry.

read x509

Description

Read an X 509 certificate or certificate chain. We say read instead of import since you cannot alter a
certificate without invalidating it, hence there is no way to write any changes.

Usage
read_x509(file_path)

Arguments
file_path - the path (VFES paths are of course supported) to the file holding the cert(s).

Output

If there is a single certificate, then a stem representing that. If there is a certificate chain, then the result
is a list of the certificates in the order found.

QDL'’s Crypto Module

Example

in this example, I downloaded the certificate from the GitHub main site and am going to read it. A bit
of truncation and formatting is done to make it display nicer.

cert.:=crypto#read_x509('/home/ncsa/Downloads/github-com.pem')
print(cert.)
algorithm : {name:SHA256withECDSA, 0id:1.2.840.10045.4.3.2}
email : www.github.com
encoded : BEGIN CERTIFICATE MIIEozCCBEmgAwWIBAQIQT. ..
issuer : {alt_names: {dNSName:www.github.com},
dn:CN=Sectigo ECC Domain Validation Secure Server CA, 0=Sectigo
Limited, L=Salford, ST=Greater Manchester, C=GB,
x500:CN=Sectigo ECC Domain Validation Secure Server CA,0=Sectigo
Limited, L=Salford, ST=Greater Manchester,C=GB}
not_after : 1741391999000
not_before : 1709769600000
oids : {critical:[2.5.29.15,2.5.29.19],
noncritical:[1.3.6.1.4.1.11129.2.4.2,
.6.1.5.5.7.1.1,
.29.14,
.29.17,
.29.32,
.5.29.35,
.5.29.37]}
serial _number : 103892495973767669722220901035501109925
signature : MEUCIQCu7Yxw-VR43BxY24MRjRr -sbNdF9Gub7pd915LOFhl. ..
subject : {alt_names: {dNSName:www.github.com},
dn:CN=github.com, x500:CN=github.com}
version : v3

Note that the OIDs are listed. Several of these are interpreted and returned as standard values.

Getting a stem of OIDs

crypto#read_oid(cert., {'a':'2.5.29.14','b':'2.5.29.17', 'c':'2.5.29.32'})
{a:BBYEFDtoPzQ69UcOyu-mTj2avV5uesyf,
b :BB4wWHIIKZ210aHViLmNvbYIOd3d3LmdpdGh1Yi5jh20,

c :BEIWQDAOGBgSrBgEEAbIXAQICBzA1IMCMGCCsGAQUFBwIBFhdodHRwczovL3N1Y3RpZ28uY2
9tLONQUzAIBgZngQwBAgE

}

Each entry is returned with its value.

QDL'’s Crypto Module

to_public

Description
Return the public part of a key

Usage
to_public(key. | keys.)

Arguments
key. - asingle key stem

keys. - astem of of key stems.

Output

Each key has its public parts returned. In the case of an symmetric key, the key itself is returned.

Example
This takes a single RSA key and returns the public part:

print(crypto#to_public(rsa.), 72)
: RS256
: AQAB
: CCB6D75A73F1F2F8
: RSA

: AJp4A-Q uXMSvndxUJInD9sutUKVNu-A7i9V35V9yk7_ NLCgEhsnbCenjXIiURENup5
ORUrRjVvNj_jyp-JNNOQTQO1leVIKZucIx-vt8mo9dpAADsSQnwQtdp5ywV-dMSx4Tdqq
udH509g88EKMNn04AsUgq0ZT28Ch0iz9NIxkvesnw9

: sig

to_jwt

Description

Sign a stem as a JWT using an RSA or EC key. This turns a given stem into an RFC 7517 compliant
JWT (JSON web token).

Usage

to_jwt(payload.) - create an unsigned JWT

QDL'’s Crypto Module

to_jwt(payload., key.) — create the JWT, also creating the header

to_jwt(header., payload., key.) — use the supplied header, adding only required information.

Arguments

header. — a stem of information about the way the payload is signed.

payload. — the stem. It will be turned into a JSON object then processed, so not every stem can be
signed this was (e.g., JSON has no concept of a set, so set entries are converted to a list).

key. —the RSA or EC key to use.

Output

A JWT is of the form header.payload.signature unless it is unsigned, in which case it is of the
form header.payload. (and the trailing period is required!). You can create an unsigned JWT also by
supplying a header with the “alg” set to “none”.

Example. An unsigned JWT
Create an unsigned JWT

¢ := j_load('crypto');
jwt := c#to_jwt{'a':{'b':[;3]1}});
jwt

eyJ0eXA10iJKV1QiLCJhbGci0iJub251In06.eyJhIjp7ImIi0O1lswLDESM119fQ.
decode(tokenize(jwt)\[0,1])
[{Iltypll : "JWT", Ilalgll : Ilnonell}, {Ilall : {Ilbll: [0’ 1, 2]}}]

Note that the output is JSON here. You would need to convert it to a stem or just use the from_jwt
method

Example. A signed JWT
p. =={lal:lql,lbl:{lsl:ltl}};
crypto =j_Tload('crypto');
rsa. =crypto#create_key(2048);
rr =crypto#to_jwt(p., rsa.);

rr
eyJraWwQiOiI3REQ1RDJIDMKJCMUE2MzdBIiwidHIwIjoiSldUIiwiYWxnIjoiUIMyNTYifQ.
EyJhIjoicSIsImIiOnsicyI6InQifXe.
Qqd9QotTCo. . .

This uses an RSA key (which has to be at least 2048 bytes long).

If you prefer an example using an elliptic key

QDL'’s Crypto Module

p. =={al:lql,lbl:{lsl:ltl}};

crypto =_load('crypto');

ec.= crypto#create_key({'type':'EC'});
ss = crypto#to_jwt(p., ec.);

SS;
eyJrawQi0iI5RDRCOTMOQjEYMkY4QkFBIiwidHlwIjoiS1dUIiwiYWxnIjoiRVMYNTYifQ.
EyJhIjoicSIsImIiOnsicyI6InQifXo.
497p54TXhWkxctB. . .

Note that the headers are different. In the case of the elliptic curve that is

decode('eyJraWQi0OiI5RDRCOTMOQjEYyMkY4QKkFBIiwidHIwIjoiS1ldUIiwiYWxnIjoiRVMyNTY1ifQ"')

{"kid" :"9D4B934B122F8BAA", "typ":"JWT", "alg":"ES256"}

Example. Sending a custom header

In this example, we’ll send along a custom header that includes the time issued at. Just because, we’ll
how how to print the raw token, by chopping it up at each “.” and decoding the result. The header and
payload are in JSON, not stems! As expected, the header shows the iat (issued at time) claim and the
payload is as expected. Note that the signature, which is simply an array of bytes, decodes as gibberish,
so is not terribly interesting by itself. This does show all the parts of a JWT nicely though.

ec_jwt := crypto#to_jwt({'iat':date_ms()%1000},p., ec.);
print(decode(tokenize(ec_jwt,'."')))

0 : {"typ":"JWT",6 "iat":1735561786.341000000000000, "alg":"ES256", "kid":"9D4B934B122F8BAA"}
1 - {Ilall . IIqII’ . fugn.ngn

2 : n#]_WOHH; #6440/ GKHG=00r 0" GHEDEEEPOMT* . 6686 [#6 2#GN=66#0

Note To get the issued at time in seconds, we used % and not division, since division would have given
us a decimal in the header, not an integer.

verify

Description
Verify a JWT or aggregate (stem or set) of them against a key.

Usage
verify(jwt | jwt., key.)

Arguments
jwt - AJWT

mailto:Fm@R

QDL'’s Crypto Module

jwt. - astem of JWTs

key. - the key that was used to sign them.

Output

A left conformable object that has true for each valid signature and false otherwise. Unrecognized
arguments (such as a non-string or non-JWT string) return false.

Example

Bare bones to show that verify checks what signing does. The values for the key and payload are from
the to_jwt function:

crypto#verify(crypto#to_jwt(p., ec.), ec.);

true

Next, we make a list of JWTs and verify them:

jwt. =[
crypto#to_jwt(p.), // unsigned
crypto#to_jwt(p., ec.), // basic
crypto#to_jwt({'iat':date_ms()%16000}, p., ec.) // custom header
1;
crypto#verify(jwt., ec.);
[true, true, true]

Which shows that each entry of the list is checked. If we submitted non-JWTs each would be flagged as
false. In this next example,we append a string and an integer. The contract for the function is to check if
the arguments can be verified with the given key, hence the result

crypto#verify(jwt.~"'foo'~42, ec.);

[true, true, true, false, false]

	Variable reference
	$$KEY_TYPE

	Function reference
	create_key
	AES key parameters
	RSA key parameters
	EC key parameters

	decrypt
	encrypt
	export
	from_jwt
	import
	read_oid
	read_x509
	to_public
	to_jwt
	verify

